دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2024]
نویسندگان: Andrea Fusiello
سری:
ISBN (شابک) : 3031345061, 9783031345067
ناشر: Springer
سال نشر: 2024
تعداد صفحات: 362
[348]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 Mb
در صورت تبدیل فایل کتاب Computer Vision: Three-dimensional Reconstruction Techniques به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بینایی کامپیوتر: تکنیک های بازسازی سه بعدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Preface Acknowledgements Contents Acronyms Listings 1 Introduction 1.1 The Prodigy of Vision 1.2 Low-Level Computer Vision 1.3 Overview of the Book 1.4 Notation References 2 Fundamentals of Imaging 2.1 Introduction 2.2 Perspective 2.3 Digital Images 2.4 Thin Lenses 2.4.1 Telecentric Optics 2.5 Radiometry References 3 The Pinhole Camera Model 3.1 Introduction 3.2 Pinhole Camera 3.3 Simplified Pinhole Model 3.4 General Pinhole Model 3.4.1 Intrinsic Parameters 3.4.1.1 Field of View 3.4.2 Extrinsic Parameters 3.5 Dissection of the Perspective Projection Matrix 3.5.1 Collinearity Equations 3.6 Radial Distortion Problems References 4 Camera Calibration 4.1 Introduction 4.2 The Direct Linear Transform Method 4.3 Factorisation of the Perspective Projection Matrix 4.4 Calibrating Radial Distortion 4.5 The Sturm-Maybank-Zhang Calibration Algorithm Problems References 5 Absolute and Exterior Orientation 5.1 Introduction 5.2 Absolute Orientation 5.2.1 Orthogonal Procrustes Analysis 5.3 Exterior Orientation 5.3.1 Fiore's Algorithm 5.3.2 Procrustean Method 5.3.3 Direct Method Problems References 6 Two-View Geometry 6.1 Introduction 6.2 Epipolar Geometry 6.3 Fundamental Matrix 6.4 Computing the Fundamental Matrix 6.4.1 The Seven-Point Algorithm 6.4.2 Preconditioning 6.5 Planar Homography 6.5.1 Computing the Homography 6.6 Planar Parallax Problems References 7 Relative Orientation 7.1 Introduction 7.2 The Essential Matrix 7.2.1 Geometric Interpretation 7.2.2 Computing the Essential Matrix 7.3 Relative Orientation from the Essential Matrix 7.3.1 Closed Form Factorisation of the Essential Matrix 7.4 Relative Orientation from the Calibrated Homography Problems References 8 Reconstruction from Two Images 8.1 Introduction 8.2 Triangulation 8.3 Ambiguity of Reconstruction 8.4 Euclidean Reconstruction 8.5 Projective Reconstruction 8.6 Euclidean Upgrade from Known Intrinsic Parameters 8.7 Stratification Problems References 9 Non-linear Regression 9.1 Introduction 9.2 Algebraic Versus Geometric Distance 9.3 Non-linear Regression of the PPM 9.3.1 Residual 9.3.2 Parameterisation 9.3.3 Derivatives 9.3.4 General Remarks 9.4 Non-linear Regression of Exterior Orientation 9.5 Non-linear Regression of a Point in Space 9.5.1 Residual 9.5.2 Derivatives 9.5.3 Radial Distortion 9.6 Regression in the Joint Image Space 9.7 Non-linear Regression of the Homography 9.7.1 Residual 9.7.2 Parameterisation 9.7.3 Derivatives 9.8 Non-linear Regression of the Fundamental Matrix 9.8.1 Residual 9.8.2 Parameterisation 9.8.3 Derivatives 9.9 Non-linear Regression of Relative Orientation 9.9.1 Parameterisation 9.9.2 Derivatives 9.10 Robust Regression Problems References 10 Stereopsis: Geometry 10.1 Introduction 10.2 Triangulation in the Normal Case 10.3 Epipolar Rectification 10.3.1 Calibrated Rectification 10.3.2 Uncalibrated Rectification Problems References 11 Features Points 11.1 Introduction 11.2 Filtering Images 11.2.1 Smoothing 11.2.1.1 Non-linear Filters 11.2.2 Derivation 11.3 LoG Filtering 11.4 Harris-Stephens Operator 11.4.1 Matching and Tracking 11.4.2 Kanade-Lucas-Tomasi Algorithm 11.4.3 Predictive Tracking 11.5 Scale Invariant Feature Transform 11.5.1 Scale-Space 11.5.2 SIFT Detector 11.5.3 SIFT Descriptor 11.5.4 Matching References 12 Stereopsis: Matching 12.1 Introduction 12.2 Constraints and Ambiguities 12.3 Local Methods 12.3.1 Matching Cost 12.3.2 Census Transform 12.4 Adaptive Support 12.4.1 Multiresolution Stereo Matching 12.4.2 Adaptive Windows 12.5 Global Matching 12.6 Post-Processing 12.6.1 Reliability Indicators 12.6.2 Occlusion Detection References 13 Range Sensors 13.1 Introduction 13.2 Structured Lighting 13.2.1 Active Stereopsis 13.2.2 Active Triangulation 13.2.3 Ray-Plane Triangulation 13.2.4 Scanning Methods 13.2.5 Coded-Light Methods 13.3 Time-of-Flight Sensors 13.4 Photometric Stereo 13.4.1 From Normals to Coordinates 13.5 Practical Considerations References 14 Multi-View Euclidean Reconstruction 14.1 Introduction 14.1.1 Epipolar Graph 14.1.2 The Case of Three Images 14.1.3 Taxonomy 14.2 Point-Based Approaches 14.2.1 Adjustment of Independent Models 14.2.2 Incremental Reconstruction 14.2.3 Hierarchical Reconstruction 14.3 Frame-Based Approach 14.3.1 Synchronisation of Rotations 14.3.2 Synchronisation of Translations 14.3.3 Localisation from Bearings 14.4 Bundle Adjustment 14.4.1 Jacobian of Bundle Adjustment 14.4.2 Reduced System References 15 3D Registration 15.1 Introduction 15.1.1 Generalised Procrustes Analysis 15.2 Correspondence-Less Methods 15.2.1 Registration of Two Point Clouds 15.2.2 Iterative Closest Point 15.2.3 Registration of Many Point Clouds References 16 Multi-view Projective Reconstruction and Autocalibration 16.1 Introduction 16.1.1 Sturm-Triggs Factorisation Method 16.2 Autocalibration 16.2.1 Absolute Quadric Constraint 16.2.1.1 Solution Strategies 16.2.2 Mendonça-Cipolla Method 16.3 Autocalibration via H∞ 16.4 Tomasi-Kanade's Factorisation 16.4.1 Affine Camera 16.4.2 The Factorisation Method for Affine Camera Problems References 17 Multi-view Stereo Reconstruction 17.1 Introduction 17.2 Volumetric Stereo in Object-Space 17.2.1 Shape from Silhouette 17.2.2 Szeliski's Algorithm 17.2.3 Voxel Colouring 17.2.4 Space Carving 17.3 Volumetric Stereo in Image-Space 17.4 Marching Cubes References 18 Image-Based Rendering 18.1 Introduction 18.2 Parametric Transformations 18.2.1 Mosaics 18.2.1.1 Alignment 18.2.1.2 Blending 18.2.2 Image Stabilisation 18.2.3 Perspective Rectification 18.3 Non-parametric Transformations 18.3.1 Transfer with Depth 18.3.2 Transfer with Disparity 18.3.3 Epipolar Transfer 18.3.4 Transfer with Parallax 18.3.5 Ortho-Projection 18.4 Geometric Image Transformation Problems References A Notions of Linear Algebra A.1 Introduction A.2 Scalar Product A.3 Matrix Norm A.4 Inverse Matrix A.5 Determinant A.6 Orthogonal Matrices A.7 Linear and Quadratic Forms A.8 Rank A.9 QR Decomposition A.10 Eigenvalues and Eigenvectors A.11 Singular Value Decomposition A.12 Pseudoinverse A.13 Cross Product A.14 Kronecker's Product A.15 Rotations A.16 Matrices Associated with Graphs References B Matrix Differential Calculation B.1 Derivatives of Vector and Matrix Functions B.2 Derivative of Rotations B.2.1 Axis/Angle Representation B.2.2 Euler Representation References C Regression C.1 Introduction C.2 Least-Squares C.2.1 Linear Least-Squares C.2.2 Non-linear Least-Squares C.2.2.1 Gauss-Newton Method C.2.3 The Levenberg-Marquardt Method C.3 Robust Regression C.3.1 Outliers and Robustness C.3.2 M-Estimators C.3.3 Least Median of Squares C.3.4 RANSAC C.4 Propagation of Uncertainty C.4.1 Covariance Propagation in Least-Squares References D Notions of Projective Geometry D.1 Introduction D.2 Perspective Projection D.3 Homogeneous Coordinates D.4 Equation of the Line D.5 Transformations Reference E Matlab Code Index