دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Song-Chun Zhu, Ying Nian Wu سری: ISBN (شابک) : 9783030965297, 9783030965303 ناشر: Springer سال نشر: 2023 تعداد صفحات: 357 [364] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Computer Vision: Statistical Models for Marr's Paradigm به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب چشم انداز کامپیوتری: مدل های آماری برای پارادایم مار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
As the first book of a three-part series, this book is offered as a tribute to pioneers in vision, such as Béla Julesz, David Marr, King-Sun Fu, Ulf Grenander, and David Mumford. The authors hope to provide foundation and, perhaps more importantly, further inspiration for continued research in vision. This book covers David Marr\'s paradigm and various underlying statistical models for vision. The mathematical framework herein integrates three regimes of models (low-, mid-, and high-entropy regimes) and provides foundation for research in visual coding, recognition, and cognition. Concepts are first explained for understanding and then supported by findings in psychology and neuroscience, after which they are established by statistical models and associated learning and inference algorithms. A reader will gain a unified, cross-disciplinary view of research in vision and will accrue knowledge spanning from psychology to neuroscience to statistics.
978-3-030-96530-3 1 Preface Story of David Marr Beyond David Marr's Paradigm Introducing the Book Series Contents About the Authors 978-3-030-96530-3_1 1 Introduction 1.1 Goal of Vision 1.2 Seeing as Bayesian Inference 1.3 Knowledge Representation 1.4 Pursuit of Probabilistic Models 978-3-030-96530-3_2 2 Statistics of Natural Images 2.1 Image Space and Distribution 2.2 Information and Encoding 2.3 Image Statistics and Power Law 2.4 Kurtosis and Sparsity 2.5 Scale Invariance 978-3-030-96530-3_3 3 Textures 3.1 Julesz Quest 3.2 Markov Random Fields Markov Random Field (MRF) Ising and Potts Models Gaussian Markov Random Field (GMRF) Advanced Models: Hierarchical MRF and Mumford–Shah Model Selecting Filters and Learning Potential Functions 3.3 Filters for Early Vision Correlation and Convolution Edge Detection Filters Gaussian Filters Derivative of Gaussian and Laplacian of Gaussian Filters Gabor Filters 3.4 FRAME Model Intuition and the Big Picture Deriving the FRAME Model Learning Potential Functions Filter Selection 3.5 Texture Ensemble Ensembles in Statistical Physics Texture Ensemble Type Theory and Entropy Rate Functions A Simple Independent Model From FRAME Model to Julesz Ensemble on Infinite Lattice From Julesz Ensemble to FRAME Model on Finite Lattice Equivalence of FRAME and Julesz Ensemble From Julesz Ensemble to FRAME Model From FRAME Model to Julesz Ensemble 3.6 Reaction and Diffusion Equations Turing Diffusion-Reaction Heat Diffusion Anisotropic Diffusion GRADE: Gibbs Reaction and Diffusion Equations Properties of GRADE Property 1: A General Statistical Framework Property 2: Diffusion Property 3: Reaction 3.7 Conclusion 978-3-030-96530-3_4 4 Textons 4.1 Textons and Textures Julesz's Discovery Neural Coding Schemes 4.2 Sparse Coding Image Representation Basis and Frame Olshausen–Field Model A Three-Level Generative Model 4.3 Active Basis Model Olshausen–Field Model for Sparse Coding Active Basis Model for Shared Sparse Coding of Aligned Image Patches Prototype Algorithm Statistical Modeling Shared Matching Pursuit 4.4 Sparse FRAME Model Dense FRAME Sparse Representation Maximum Likelihood Learning Generative Boosting Sparse Model 4.5 Compositional Sparse Coding Sparsity and Composition Compositional Sparse Coding Model 978-3-030-96530-3_5 5 Gestalt Laws and Perceptual Organization 5.1 Gestalt Laws for Perceptual Organization 5.2 Texton Process Embedding Gestalt Laws Introduction Background on Descriptive and Generative Learning A Multi-layered Generative Model for Images A Descriptive Model of Texton Processes Background: Physics Foundation for Visual Modeling Gestalt Ensemble An Integrated Learning Framework Integrated Learning Mathematical Definitions of Visual Patterns Effective Inference by Simplified Likelihood Initialization by Likelihood Simplification and Clustering Experiment I: Texton Clustering Experiment II: Integrated Learning and Synthesis Discussion 978-3-030-96530-3_6 6 Primal Sketch: Integrating Textures and Textons 6.1 Marr's Conjecture on Primal Sketch 6.2 The Two-Layer Model Structure Domain The Dictionary of Image Primitives Texture Domain Integrated Model The Sketch Pursuit Algorithm 6.3 Hybrid Image Templates Representation Prototypes, ε-Balls, and Saturation Function Projecting Image Patches to 1D Responses Template Pursuit by Information Projection Example: Vector Fields for Human Hair Analysis and Synthesis 6.4 HoG and SIFT Representations 978-3-030-96530-3_7 7 2.1D Sketch and Layered Representation 7.1 Problem Formulation 7.2 Variational Formulation by Nitzberg and Mumford The Energy Functional The Euler Elastica for Completing Occluded Curves 7.3 Mixed Markov Random Field Formulation Definition of W2D and W2.1D The Mixed MRF and Its Graphical Representation Bayesian Formulation 7.4 2.1D Sketch with Layered Regions and Curves Generative Models and Bayesian Formulation Generative Models of Curves Generative Models of Regions Bayesian Formulation for Probabilistic Inference Experiments Experiment A: Computing Regions and Free Curves 978-3-030-96530-3_8 8 2.5D Sketch and Depth Maps 8.1 Marr's Definition 8.2 Shape from Stereo The Image Formation Model Two-Layer Representation The Inference Algorithm Example Results 8.3 Shape from Shading Overview of Two-Layer Generation Model Results 978-3-030-96530-3_9 9 Learning by Information Projection 9.1 Information Projection Orthogonality and Duality Maximum Likelihood Implementation 9.2 Minimax Learning Framework Model Pursuit Strategies 2D Toy Example Learning Shape Patterns Relation to Discriminative Learning 978-3-030-96530-3_10 10 Information Scaling 10.1 Image Scaling Model and Assumptions Image Formation and Scaling Empirical Observations on Information Scaling Change of Compression Rate Variance Normalization Basic Information Theoretical Concepts Change of Entropy Rate 10.2 Perceptual Entropy A Continuous Spectrum 10.3 Perceptual Scale Space 10.4 Energy Landscape 978-3-030-96530-3_11 11 Deep Image Models 11.1 Deep FRAME and Deep Energy-Based Model ConvNet Filters FRAME with ConvNet Filters Learning and Sampling Learning a New Layer of Filters Deep Convolutional Energy-Based Model Hopfield Auto-Encoder Multi-grid Sampling and Modeling Adversarial Interpretation 11.2 Generator Network Factor Analysis Nonlinear Factor Analysis Learning by Alternating Back-Propagation Nonlinear Generalization of AAM Model Dynamic Generator Model 978-3-030-96530-3_12 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models 12.1 Introduction Three Families of Probabilistic Models Supervised, Unsupervised, and Self-supervised Learning MCMC for Synthesis and Inference Deep Networks as Function Approximators Learned Computation Amortized Computation for Synthesis and InferenceSampling Distributed Representation and Embedding Perturbations of Kullback–Leibler Divergence Kullback–Leibler Divergence in Two Directions 12.2 Descriptive Energy-Based Model Model and Origin Gradient-Based Sampling Maximum Likelihood Estimation (MLE) Objective Function and Estimating Equation of MLE Perturbation of KL-divergence Self-adversarial Interpretation Short-Run MCMC for Synthesis Objective Function and Estimating Equation with Short-Run MCMC Flow-Based Model Flow-Based Reference and Latent Space Sampling Diffusion Recovery Likelihood Diffusion-Based Model 12.3 Equivalence Between Discriminative and DescriptiveModels Discriminative Model Descriptive Model as Exponential Tilting of a Reference Distribution Discriminative Model via Bayes Rule Noise Contrastive Estimation Flow Contrastive Estimation 12.4 Generative Latent Variable Model Model and Origin Generative Model with Multi-layer Latent Variables MLE Learning and Posterior Inference Posterior Sampling Perturbation of KL-divergence Short-Run MCMC for Approximate Inference Objective Function and Estimating Equation 12.5 Descriptive Model in Latent Space of Generative Model Top-Down and Bottom-Up Descriptive Energy-Based Model in Latent Space Maximum Likelihood Learning Short-Run MCMC for Synthesis and Inference Divergence Perturbation 12.6 Variational and Adversarial Learning From Short-Run MCMC to Learned Sampling Computations VAE: Learned Computation for Inference Sampling GAN: Joint Learning of Generator and Discriminator Joint Learning of Descriptive and Generative Models Divergence Triangle: Integrating VAE and ACD 12.7 Cooperative Learning via MCMC Teaching Joint Training of Descriptive and Generative Models Conditional Learning via Fast Thinking Initializer and Slow Thinking Solver 1 (1) Bibliography