دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd ed. 2022
نویسندگان: Richard Szeliski
سری:
ISBN (شابک) : 3030343715, 9783030343712
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 938
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 107 مگابایت
در صورت تبدیل فایل کتاب Computer Vision: Algorithms and Applications (Texts in Computer Science) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بینایی کامپیوتر: الگوریتم ها و کاربردها (متون در علوم کامپیوتر) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بینایی رایانه: الگوریتمها و برنامهها به بررسی انواع تکنیکهای مورد استفاده برای تجزیه و تحلیل و تفسیر تصاویر میپردازد. همچنین برنامه های چالش برانگیز دنیای واقعی را توصیف می کند که در آن بینایی با موفقیت مورد استفاده قرار می گیرد، هم در برنامه های تخصصی مانند جستجوی تصویر و ناوبری خودکار، و هم برای کارهای سرگرم کننده و در سطح مصرف کننده که دانش آموزان می توانند برای عکس ها و ویدیوهای شخصی خود اعمال کنند.< /p>
این کتاب/مرجع فوقالعاده معتبر و جامع، بیش از یک منبع «دستور پخت»، رویکردی علمی برای فرمولبندی مشکلات بینایی رایانه دارد. سپس این مسائل با استفاده از جدیدترین مدلهای کلاسیک و یادگیری عمیق تحلیل میشوند و با استفاده از اصول مهندسی دقیق حل میشوند.
موضوعات و ویژگیها:
این کتاب درسی مناسب برای دوره های سطح بالا در مقطع کارشناسی یا کارشناسی ارشد در علوم کامپیوتر یا مهندسی، بر روی تکنیک های اساسی تمرکز دارد که در شرایط واقعی کار می کنند. و دانش آموزان را تشویق می کند تا مرزهای خلاقیت خود را جابجا کنند. طراحی و نمایش آن همچنین آن را به عنوان یک مرجع منحصر به فرد برای تکنیک های بنیادی و ادبیات تحقیقاتی فعلی در بینایی کامپیوتر بسیار مناسب می کند.
Computer Vision: Algorithms and Applications explores the variety of techniques used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both in specialized applications such as image search and autonomous navigation, as well as for fun, consumer-level tasks that students can apply to their own personal photos and videos.
More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference takes a scientific approach to the formulation of computer vision problems. These problems are then analyzed using the latest classical and deep learning models and solved using rigorous engineering principles.
Topics and features:
Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.
Preface Contents Chapter 1 Introduction 1.1 What is computer vision? 1.2 A brief history 1.3 Book overview 1.4 Sample syllabus 1.5 A note on notation 1.6 Additional reading Chapter 2 Image formation 2.1 Geometric primitives and transformations 2.1.1 2D transformations 2.1.2 3D transformations 2.1.3 3D rotations 2.1.4 3D to 2D projections 2.1.5 Lens distortions 2.2 Photometric image formation 2.2.1 Lighting 2.2.2 Reflectance and shading 2.2.3 Optics 2.3 The digital camera 2.3.1 Sampling and aliasing 2.3.2 Color 2.3.3 Compression 2.4 Additional reading 2.5 Exercises Chapter 3 Image processing 3.1 Point operators 3.1.1 Pixel transforms 3.1.2 Color transforms 3.1.3 Compositing and matting 3.1.4 Histogram equalization 3.2 Linear filtering 3.2.1 Separable filtering 3.2.2 Examples of linear filtering 3.2.3 Band-pass and steerable filters 3.3 More neighborhood operators 3.3.1 Non-linear filtering 3.3.2 Bilateral filtering 3.3.3 Binary image processing 3.4 Fourier transforms 3.4.1 Two-dimensional Fourier transforms 3.4.2 Application: Sharpening, blur, and noise removal 3.5 Pyramids and wavelets 3.5.1 Interpolation 3.5.2 Decimation 3.5.3 Multi-resolution representations 3.5.4 Wavelets 3.5.5 Application: Image blending 3.6 Geometric transformations 3.6.1 Parametric transformations 3.6.2 Mesh-based warping 3.6.3 Application: Feature-based morphing 3.7 Additional reading 3.8 Exercises Chapter 4 Model fitting and optimization 4.1 Scattered data interpolation 4.1.1 Radial basis functions 4.1.2 Overfitting and underfitting 4.1.3 Robust data fitting 4.2 Variational methods and regularization 4.2.1 Discrete energy minimization 4.2.2 Total variation 4.2.3 Bilateral solver 4.2.4 Application: Interactive colorization 4.3 Markov random fields 4.3.1 Conditional random fields 4.3.2 Application: Interactive segmentation 4.4 Additional reading 4.5 Exercises Chapter 5 Deep Learning 5.1 Supervised learning 5.1.1 Nearest neighbors 5.1.2 Bayesian classification 5.1.3 Logistic regression 5.1.4 Support vector machines 5.1.5 Decision trees and forests 5.2 Unsupervised learning 5.2.1 Clustering 5.2.2 K-means and Gaussians mixture models 5.2.3 Principal component analysis 5.2.4 Manifold learning 5.2.5 Semi-supervised learning 5.3 Deep neural networks 5.3.1 Weights and layers 5.3.2 Activation functions 5.3.3 Regularization and normalization 5.3.4 Loss functions 5.3.5 Backpropagation 5.3.6 Training and optimization 5.4 Convolutional neural networks 5.4.1 Pooling and unpooling 5.4.2 Application: Digit classification 5.4.3 Network architectures 5.4.4 Model zoos 5.4.5 Visualizing weights and activations 5.4.6 Adversarial examples 5.4.7 Self-supervised learning 5.5 More complex models 5.5.1 Three-dimensional CNNs 5.5.2 Recurrent neural networks 5.5.3 Transformers 5.5.4 Generative models 5.6 Additional reading 5.7 Exercises Chapter 6 Recognition 6.1 Instance recognition 6.2 Image classification 6.2.1 Feature-based methods 6.2.2 Deep networks 6.2.3 Application: Visual similarity search 6.2.4 Face recognition 6.3 Object detection 6.3.1 Face detection 6.3.2 Pedestrian detection 6.3.3 General object detection 6.4 Semantic segmentation 6.4.1 Application: Medical image segmentation 6.4.2 Instance segmentation 6.4.3 Panoptic segmentation 6.4.4 Application: Intelligent photo editing 6.4.5 Pose estimation 6.5 Video understanding 6.6 Vision and language 6.7 Additional reading 6.8 Exercises Chapter 7 Feature detection and matching 7.1 Points and patches 7.1.1 Feature detectors 7.1.2 Feature descriptors 7.1.3 Feature matching 7.1.4 Large-scale matching and retrieval 7.1.5 Feature tracking 7.1.6 Application: Performance-driven animation 7.2 Edges and contours 7.2.1 Edge detection 7.2.2 Contour detection 7.2.3 Application: Edge editing and enhancement 7.3 Contour tracking 7.3.1 Snakes and scissors 7.3.2 Level Sets 7.3.3 Application: Contour tracking and rotoscoping 7.4 Lines and vanishing points 7.4.1 Successive approximation 7.4.2 Hough transforms 7.4.3 Vanishing points 7.5 Segmentation 7.5.1 Graph-based segmentation 7.5.2 Mean shift 7.5.3 Normalized cuts 7.6 Additional reading 7.7 Exercises Chapter 8 Image alignment and stitching 8.1 Pairwise alignment 8.1.1 2D alignment using least squares 8.1.2 Application: Panography 8.1.3 Iterative algorithms 8.1.4 Robust least squares and RANSAC 8.1.5 3D alignment 8.2 Image stitching 8.2.1 Parametric motion models 8.2.2 Application: Whiteboard and document scanning 8.2.3 Rotational panoramas 8.2.4 Gap closing 8.2.5 Application: Video summarization and compression 8.2.6 Cylindrical and spherical coordinates 8.3 Global alignment 8.3.1 Bundle adjustment 8.3.2 Parallax removal 8.3.3 Recognizing panoramas 8.4 Compositing 8.4.1 Choosing a compositing surface 8.4.2 Pixel selection and weighting (deghosting) 8.4.3 Application: Photomontage 8.4.4 Blending 8.5 Additional reading 8.6 Exercises Chapter 9 Motion estimation 9.1 Translational alignment 9.1.1 Hierarchical motion estimation 9.1.2 Fourier-based alignment 9.1.3 Incremental refinement 9.2 Parametric motion 9.2.1 Application: Video stabilization 9.2.2 Spline-based motion 9.2.3 Application: Medical image registration 9.3 Optical flow 9.3.1 Deep learning approaches 9.3.2 Application: Rolling shutter wobble removal 9.3.3 Multi-frame motion estimation 9.3.4 Application: Video denoising 9.4 Layered motion 9.4.1 Application: Frame interpolation 9.4.2 Transparent layers and reflections 9.4.3 Video object segmentation 9.4.4 Video object tracking 9.5 Additional reading 9.6 Exercises Chapter 10 Computational photography 10.1 Photometric calibration 10.1.1 Radiometric response function 10.1.2 Noise level estimation 10.1.3 Vignetting 10.1.4 Optical blur (spatial response) estimation 10.2 High dynamic range imaging 10.2.1 Tone mapping 10.2.2 Application: Flash photography 10.3 Super-resolution, denoising, and blur removal 10.3.1 Color image demosaicing 10.3.2 Lens blur (bokeh) 10.4 Image matting and compositing 10.4.1 Blue screen matting 10.4.2 Natural image matting 10.4.3 Optimization-based matting 10.4.4 Smoke, shadow, and flash matting 10.4.5 Video matting 10.5 Texture analysis and synthesis 10.5.1 Application: Hole filling and inpainting 10.5.2 Application: Non-photorealistic rendering 10.5.3 Neural style transfer and semantic image synthesis 10.6 Additional reading 10.7 Exercises Chapter 11 Structure from motion and SLAM 11.1 Geometric intrinsic calibration 11.1.1 Vanishing points 11.1.2 Application: Single view metrology 11.1.3 Rotational motion 11.1.4 Radial distortion 11.2 Pose estimation 11.2.1 Linear algorithms 11.2.2 Iterative non-linear algorithms 11.2.3 Application: Location recognition 11.2.4 Triangulation 11.3 Two-frame structure from motion 11.3.1 Eight, seven, and five-point algorithms 11.3.2 Special motions and structures 11.3.3 Projective (uncalibrated) reconstruction 11.3.4 Self-calibration 11.3.5 Application: View morphing 11.4 Multi-frame structure from motion 11.4.1 Factorization 11.4.2 Bundle adjustment 11.4.3 Exploiting sparsity 11.4.4 Application: Match move 11.4.5 Uncertainty and ambiguities 11.4.6 Application: Reconstruction from internet photos 11.4.7 Global structure from motion 11.4.8 Constrained structure and motion 11.5 Simultaneous localization and mapping (SLAM) 11.5.1 Application: Autonomous navigation 11.5.2 Application: Smartphone augmented reality 11.6 Additional reading 11.7 Exercises Chapter 12 Depth estimation 12.1 Epipolar geometry 12.1.1 Rectification 12.1.2 Plane sweep 12.2 Sparse correspondence 12.2.1 3D curves and profiles 12.3 Dense correspondence 12.3.1 Similarity measures 12.4 Local methods 12.4.1 Sub-pixel estimation and uncertainty 12.4.2 Application: Stereo-based head tracking 12.5 Global optimization 12.5.1 Dynamic programming 12.5.2 Segmentation-based techniques 12.5.3 Application: Z-keying and background replacement 12.6 Deep neural networks 12.7 Multi-view stereo 12.7.1 Scene flow 12.7.2 Volumetric and 3D surface reconstruction 12.7.3 Shape from silhouettes 12.8 Monocular depth estimation 12.9 Additional reading 12.10 Exercises Chapter 13 3D reconstruction 13.1 Shape from X 13.1.1 Shape from shading and photometric stereo 13.1.2 Shape from texture 13.1.3 Shape from focus 13.2 3D scanning 13.2.1 Range data merging 13.2.2 Application: Digital heritage 13.3 Surface representations 13.3.1 Surface interpolation 13.3.2 Surface simplification 13.3.3 Geometry images 13.4 Point-based representations 13.5 Volumetric representations 13.5.1 Implicit surfaces and level sets 13.6 Model-based reconstruction 13.6.1 Architecture 13.6.2 Facial modeling and tracking 13.6.3 Application: Facial animation 13.6.4 Human body modeling and tracking 13.7 Recovering texture maps and albedos 13.7.1 Estimating BRDFs 13.7.2 Application: 3D model capture 13.8 Additional reading 13.9 Exercises Chapter 14 Image-based rendering 14.1 View interpolation 14.1.1 View-dependent texture maps 14.1.2 Application: Photo Tourism 14.2 Layered depth images 14.2.1 Impostors, sprites, and layers 14.2.2 Application: 3D photography 14.3 Light fields and Lumigraphs 14.3.1 Unstructured Lumigraph 14.3.2 Surface light fields 14.3.3 Application: Concentric mosaics 14.3.4 Application: Synthetic re-focusing 14.4 Environment mattes 14.4.1 Higher-dimensional light fields 14.4.2 The modeling to rendering continuum 14.5 Video-based rendering 14.5.1 Video-based animation 14.5.2 Video textures 14.5.3 Application: Animating pictures 14.5.4 3D and free-viewpoint Video 14.5.5 Application: Video-based walkthroughs 14.6 Neural rendering 14.7 Additional reading 14.8 Exercises Chapter 15 Conclusion Appendix A Linear algebra and numerical techniques A.1 Matrix decompositions A.1.1 Singular value decomposition A.1.2 Eigenvalue decomposition A.1.3 QR factorization A.1.4 Cholesky factorization A.2 Linear least squares A.2.1 Total least squares A.3 Non-linear least squares A.4 Direct sparse matrix techniques A.4.1 Variable reordering A.5 Iterative techniques A.5.1 Conjugate gradient A.5.2 Preconditioning A.5.3 Multigrid Appendix B Bayesian modeling and inference B.1 Estimation theory B.2 Maximum likelihood estimation and least squares B.3 Robust statistics B.4 Prior models and Bayesian inference B.5 Markov random fields B.6 Uncertainty estimation (error analysis) Appendix C Supplementary material C.1 Datasets and benchmarks C.2 Software C.3 Slides and lectures References Index