ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Computer Vision Systems: 13th International Conference, ICVS 2021, Virtual Event, September 22-24, 2021, Proceedings

دانلود کتاب Computer Vision Systems: سیزدهمین کنفرانس بین المللی، ICVS 2021، رویداد مجازی، 22-24 سپتامبر 2021، مجموعه مقالات

Computer Vision Systems: 13th International Conference, ICVS 2021, Virtual Event, September 22-24, 2021, Proceedings

مشخصات کتاب

Computer Vision Systems: 13th International Conference, ICVS 2021, Virtual Event, September 22-24, 2021, Proceedings

ویرایش: 1 
نویسندگان: , , , ,   
سری: Lecture Notes in Computer Science 
ISBN (شابک) : 303087155X, 9783030871550 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 263 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 45 مگابایت 

قیمت کتاب (تومان) : 37,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Computer Vision Systems: 13th International Conference, ICVS 2021, Virtual Event, September 22-24, 2021, Proceedings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب Computer Vision Systems: سیزدهمین کنفرانس بین المللی، ICVS 2021، رویداد مجازی، 22-24 سپتامبر 2021، مجموعه مقالات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب Computer Vision Systems: سیزدهمین کنفرانس بین المللی، ICVS 2021، رویداد مجازی، 22-24 سپتامبر 2021، مجموعه مقالات

این کتاب مجموعه مقالات داوری سیزدهمین کنفرانس بین‌المللی سیستم‌های بینایی کامپیوتری، ICVS 2021 است که در سپتامبر 2021 برگزار شد. به دلیل همه‌گیری COVID-19 کنفرانس به صورت مجازی برگزار شد. 20 مقاله ارائه شده به دقت بررسی و از بین 29 مقاله ارسالی انتخاب شدند. طیف گسترده‌ای از مسائل را پوشش می‌دهد که تحت دامنه وسیع‌تر بینایی رایانه در برنامه‌های کاربردی دنیای واقعی قرار می‌گیرند، از جمله سیستم‌های بینایی برای روباتیک، وسایل نقلیه خودران، کشاورزی و پزشکی. در این جلد، مقالات در بخش‌های زیر سازماندهی شده‌اند: سیستم‌های توجه. طبقه بندی و تشخیص؛ تفسیر معنایی؛ تجزیه و تحلیل ویدئو و حرکت؛ سیستم های بینایی کامپیوتری در کشاورزی


توضیحاتی درمورد کتاب به خارجی

This book constitutes the refereed proceedings of the 13th International Conference on Computer Vision Systems, ICVS 2021, held in September 2021. Due to COVID-19 pandemic the conference was held virtually. The 20 papers presented were carefully reviewed and selected from 29 submissions. cover a broad spectrum of issues falling under the wider scope of computer vision in real-world applications, including among others, vision systems for robotics, autonomous vehicles, agriculture and medicine. In this volume, the papers are organized into the sections: attention systems; classification and detection; semantic interpretation; video and motion analysis; computer vision systems in agriculture.



فهرست مطالب

Preface
Organization
Contents
Attention Systems
Thermal Image Super-Resolution Using Second-Order Channel Attention with Varying Receptive Fields
	1 Introduction
	2 Second-Order Channel Attention with Varying Receptive Fields
		2.1 Second-Order Channel Attention
		2.2 Dilated Convolutions
		2.3 Compression Through Dilations
		2.4 Model Overview
	3 Experimental Results
		3.1 Datasets
		3.2 Implementation
		3.3 Evaluation
	4 Conclusion
	References
MARL: Multimodal Attentional Representation Learning for Disease Prediction
	1 Introduction
	2 Related Work
	3 Multimodal Attentional Representation Learning
		3.1 Preprocessing
		3.2 Lung Segmentation with Spatial Fuzzy C-Means
		3.3 Patient Biological Data Enrichment
		3.4 Multimodal Representation Learning
	4 Experimental Work
		4.1 IPF Lung Disease Dataset
		4.2 Regression of IPF Lung Disease Progression
		4.3 IPF Disease Status Classification
	5 Conclusion
	References
Object Localization with Attribute Preference Based on Top-Down Attention
	1 Introduction
	2 Related Work
	3 Architecture
		3.1 Deep Attribute Network
		3.2 Top-Down Attention
	4 Experiments
		4.1 Datasets
		4.2 Pointing Game Evaluation
		4.3 Experiment 1: Attribute Localization
		4.4 Experiment 2: Joint Attribute-Object Localization
	5 Conclusion
	References
See the Silence: Improving Visual-Only Voice Activity Detection by Optical Flow and RGB Fusion
	1 Introduction
	2 Related Work
	3 Our Approach
	4 Experimental Evaluation
		4.1 Dataset and Training
		4.2 Results
	5 Conclusion
	References
Classification and Detection
Score to Learn: A Comparative Analysis of Scoring Functions for Active Learning in Robotics
	1 Introduction
	2 Related Work
		2.1 Deep Learning Based Object Detection
		2.2 Weakly-Supervised Learning of Object Detection
	3 Methods
		3.1 Overview of the Pipeline
		3.2 Scoring Functions
	4 Experiments
		4.1 Experimental Setup
		4.2 Results Analysis on Pascal VOC
		4.3 Results Analysis on iCWT
	5 Discussion
	References
Enhancing the Performance of Image Classification Through Features Automatically Learned from Depth-Maps
	1 Introduction
	2 Literature Review on Indoor-Outdoor Image Classification
	3 Methodology
		3.1 Data Set
		3.2 Feature Extraction
		3.3 Unsupervised Learning-Based Analysis
		3.4 Supervised Learning Based Analysis
	4 Results and Discussion
		4.1 Experimental Setup
		4.2 Results of the Unsupervised Learning Based Analysis
		4.3 Results of the Supervised Learning Based Analysis
	5 Conclusions and Future Work
	References
Object Detection on TPU Accelerated Embedded Devices
	1 Introduction
	2 Related Works
		2.1 Mobile Object Detectors
		2.2 Embedded Deep Learning
	3 Methodology
		3.1 Framework and Quantization
		3.2 Datasets
		3.3 Transfer Learning
	4 Evaluation
		4.1 Inference Time
		4.2 Accuracy
		4.3 Versatility and Training Speed
		4.4 Overall Performance
	5 Conclusion
	References
Tackling Inter-class Similarity and Intra-class Variance for Microscopic Image-Based Classification
	1 Introduction
	2 Related Work
	3 Method
		3.1 Inter-class Similarity
		3.2 Intra-class Variance
		3.3 Training Algorithm
	4 Experiments
		4.1 Datasets
		4.2 Baselines
		4.3 Evaluation Metrics
		4.4 Implementation Details
	5 Results
		5.1 Diatom Dataset
		5.2 WHOI-Plankton Dataset
	6 Conclusion
	References
Semantic Interpretation
Measuring the Sim2Real Gap in 3D Object Classification for Different 3D Data Representation
	1 Introduction
	2 Related Work
		2.1 View-Based Representation
		2.2 Grid-Based Representation
		2.3 Point-Based Representation
	3 Measuring the Sim2Real Gap on ScanObjectNN
		3.1 Experimental Setup
		3.2 Results and Analysis
	4 Disentangling the Impact of Design Choices
		4.1 Hierarchical Learning from Object Parts
		4.2 Impact of Surface-Based or Euclidean-Based Representation
		4.3 Impact of Over- and Under-Segmentation and Scale
		4.4 Application-Specific Considerations
	5 Conclusion
	References
Spatially-Constrained Semantic Segmentation with Topological Maps and Visual Embeddings
	1 Introduction
	2 Related Work
	3 Methodology
		3.1 Topological Representation
		3.2 Structuring Vertices
		3.3 Spatial Segmentation
		3.4 Semantic Segmentation
	4 Experimental Results
	5 Conclusion and Future Work
	References
Knowledge-Enabled Generation of Semantically Annotated Image Sequences of Manipulation Activities from VR Demonstrations
	1 Introduction
	2 Overview
		2.1 Virtual Environment
		2.2 Recorded Episodes
	3 Data Collection
		3.1 Episode Replay
		3.2 3D Sphere Scan
	4 Experiments
	5 Related Work
	6 Conclusion and Future Work
	References
Make It Easier: An Empirical Simplification of a Deep 3D Segmentation Network for Human Body Parts
	1 Introduction
	2 Related Work
	3 Methods
		3.1 Annotation Algorithm
		3.2 Segmentation Algorithm
	4 Experiments
		4.1 Model Selection
		4.2 Data Augmentation
		4.3 Cross-Validation
	5 Conclusion
	References
Video and Motion Analysis
Video Popularity Prediction Through Fusing Early Viewership with Video Content
	1 Introduction
	2 Related Work
	3 Proposed Video Popularity Prediction Approach
	4 Experimental Results
		4.1 Datasets
		4.2 Evaluation
	5 Conclusion
	References
Action Prediction During Human-Object Interaction Based on DTW and Early Fusion of Human and Object Representations
	1 Introduction
	2 Related Work
	3 DTW-Based Action Prediction
		3.1 Feature Extraction
		3.2 DTW-Based Time Series Alignment
		3.3 Early Fusion of Human and Object Representations
	4 Experiments
	5 Summary
	References
GridTrack: Detection and Tracking of Multiple Objects in Dynamic Occupancy Grids
	1 Introduction
	2 Related Work
	3 Method
		3.1 Bayesian Occupancy Grids
		3.2 Semantic Grid
		3.3 3D Object Detection
		3.4 Grid Tracking Network
		3.5 Association
		3.6 Training
	4 Experiments
		4.1 Qualitative Results
		4.2 Quantitative Results
	5 Conclusion
	References
An Efficient Video Desnowing and Deraining Method with a Novel Variant Dataset
	1 Introduction
	2 Related Works
		2.1 Image-Based Snow/Rain Removal
		2.2 Video-Based Snow/Rain Removal
	3 Dataset Development
		3.1 Videos with Synthetic Snow and Synthetic Rain
		3.2 Videos with Quasi-snow
		3.3 Videos with Real Snow and Rain
	4 Proposed Method
	5 Experimental Results and Comparison
		5.1 Performance Evaluation
		5.2 Failure Cases
	6 Conclusion
	References
Computer Vision Systems in Agriculture
Robust Counting of Soft Fruit Through Occlusions with Re-identification
	1 Introduction
	2 Related Work
	3 Methods
		3.1 Tracking
		3.2 Re-identification and Class Description Network
		3.3 Tracking Sequences
		3.4 Evaluation Metrics
	4 Results
	5 Conclusion
	References
Non-destructive Soft Fruit Mass and Volume Estimation for Phenotyping in Horticulture
	1 Introduction
	2 Related Work
	3 Methods
		3.1 Volume Estimation
		3.2 Mass Estimation
	4 Experiments and Results
		4.1 Data Collection
		4.2 Phenotypic Trait Predictions
		4.3 In-Field Experiments
	5 Discussion
	6 Conclusions and Future Work
	References
Learning Image-Based Contaminant Detection in Wool Fleece from Noisy Annotations
	1 Introduction
	2 Related Work
		2.1 Contaminant Detection in Wool
		2.2 Semantic Segmentation
	3 Semantic Segmentation from Noisy Annotations
		3.1 Problem Definition
		3.2 Learning Probabilistic Output
	4 Wool Datasets
	5 Experiments
		5.1 Implementation Details
		5.2 Results and Discussion
	6 Conclusion
	References
Active Learning for Crop-Weed Discrimination by Image Classification from Convolutional Neural Network\'s Feature Pyramid Levels
	1 Introduction
	2 Literature Review
		2.1 Robotic Weeding
		2.2 Active Learning
		2.3 Convolutional Neural Networks and Features Pyramid Network
	3 Proposed Method
		3.1 Workflow Description
		3.2 Model Training Setup
	4 Experimental Setup
	5 Experimental Evaluation
	6 Conclusions and Future Work
	References
Author Index




نظرات کاربران