دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Markus Vincze, Timothy Patten, Henrik I Christensen, Lazaros Nalpantidis, Ming Liu سری: Lecture Notes in Computer Science ISBN (شابک) : 303087155X, 9783030871550 ناشر: Springer سال نشر: 2021 تعداد صفحات: 263 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 45 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Computer Vision Systems: 13th International Conference, ICVS 2021, Virtual Event, September 22-24, 2021, Proceedings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Computer Vision Systems: سیزدهمین کنفرانس بین المللی، ICVS 2021، رویداد مجازی، 22-24 سپتامبر 2021، مجموعه مقالات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه مقالات داوری سیزدهمین کنفرانس بینالمللی سیستمهای بینایی کامپیوتری، ICVS 2021 است که در سپتامبر 2021 برگزار شد. به دلیل همهگیری COVID-19 کنفرانس به صورت مجازی برگزار شد. 20 مقاله ارائه شده به دقت بررسی و از بین 29 مقاله ارسالی انتخاب شدند. طیف گستردهای از مسائل را پوشش میدهد که تحت دامنه وسیعتر بینایی رایانه در برنامههای کاربردی دنیای واقعی قرار میگیرند، از جمله سیستمهای بینایی برای روباتیک، وسایل نقلیه خودران، کشاورزی و پزشکی. در این جلد، مقالات در بخشهای زیر سازماندهی شدهاند: سیستمهای توجه. طبقه بندی و تشخیص؛ تفسیر معنایی؛ تجزیه و تحلیل ویدئو و حرکت؛ سیستم های بینایی کامپیوتری در کشاورزی
This book constitutes the refereed proceedings of the 13th International Conference on Computer Vision Systems, ICVS 2021, held in September 2021. Due to COVID-19 pandemic the conference was held virtually. The 20 papers presented were carefully reviewed and selected from 29 submissions. cover a broad spectrum of issues falling under the wider scope of computer vision in real-world applications, including among others, vision systems for robotics, autonomous vehicles, agriculture and medicine. In this volume, the papers are organized into the sections: attention systems; classification and detection; semantic interpretation; video and motion analysis; computer vision systems in agriculture.
Preface Organization Contents Attention Systems Thermal Image Super-Resolution Using Second-Order Channel Attention with Varying Receptive Fields 1 Introduction 2 Second-Order Channel Attention with Varying Receptive Fields 2.1 Second-Order Channel Attention 2.2 Dilated Convolutions 2.3 Compression Through Dilations 2.4 Model Overview 3 Experimental Results 3.1 Datasets 3.2 Implementation 3.3 Evaluation 4 Conclusion References MARL: Multimodal Attentional Representation Learning for Disease Prediction 1 Introduction 2 Related Work 3 Multimodal Attentional Representation Learning 3.1 Preprocessing 3.2 Lung Segmentation with Spatial Fuzzy C-Means 3.3 Patient Biological Data Enrichment 3.4 Multimodal Representation Learning 4 Experimental Work 4.1 IPF Lung Disease Dataset 4.2 Regression of IPF Lung Disease Progression 4.3 IPF Disease Status Classification 5 Conclusion References Object Localization with Attribute Preference Based on Top-Down Attention 1 Introduction 2 Related Work 3 Architecture 3.1 Deep Attribute Network 3.2 Top-Down Attention 4 Experiments 4.1 Datasets 4.2 Pointing Game Evaluation 4.3 Experiment 1: Attribute Localization 4.4 Experiment 2: Joint Attribute-Object Localization 5 Conclusion References See the Silence: Improving Visual-Only Voice Activity Detection by Optical Flow and RGB Fusion 1 Introduction 2 Related Work 3 Our Approach 4 Experimental Evaluation 4.1 Dataset and Training 4.2 Results 5 Conclusion References Classification and Detection Score to Learn: A Comparative Analysis of Scoring Functions for Active Learning in Robotics 1 Introduction 2 Related Work 2.1 Deep Learning Based Object Detection 2.2 Weakly-Supervised Learning of Object Detection 3 Methods 3.1 Overview of the Pipeline 3.2 Scoring Functions 4 Experiments 4.1 Experimental Setup 4.2 Results Analysis on Pascal VOC 4.3 Results Analysis on iCWT 5 Discussion References Enhancing the Performance of Image Classification Through Features Automatically Learned from Depth-Maps 1 Introduction 2 Literature Review on Indoor-Outdoor Image Classification 3 Methodology 3.1 Data Set 3.2 Feature Extraction 3.3 Unsupervised Learning-Based Analysis 3.4 Supervised Learning Based Analysis 4 Results and Discussion 4.1 Experimental Setup 4.2 Results of the Unsupervised Learning Based Analysis 4.3 Results of the Supervised Learning Based Analysis 5 Conclusions and Future Work References Object Detection on TPU Accelerated Embedded Devices 1 Introduction 2 Related Works 2.1 Mobile Object Detectors 2.2 Embedded Deep Learning 3 Methodology 3.1 Framework and Quantization 3.2 Datasets 3.3 Transfer Learning 4 Evaluation 4.1 Inference Time 4.2 Accuracy 4.3 Versatility and Training Speed 4.4 Overall Performance 5 Conclusion References Tackling Inter-class Similarity and Intra-class Variance for Microscopic Image-Based Classification 1 Introduction 2 Related Work 3 Method 3.1 Inter-class Similarity 3.2 Intra-class Variance 3.3 Training Algorithm 4 Experiments 4.1 Datasets 4.2 Baselines 4.3 Evaluation Metrics 4.4 Implementation Details 5 Results 5.1 Diatom Dataset 5.2 WHOI-Plankton Dataset 6 Conclusion References Semantic Interpretation Measuring the Sim2Real Gap in 3D Object Classification for Different 3D Data Representation 1 Introduction 2 Related Work 2.1 View-Based Representation 2.2 Grid-Based Representation 2.3 Point-Based Representation 3 Measuring the Sim2Real Gap on ScanObjectNN 3.1 Experimental Setup 3.2 Results and Analysis 4 Disentangling the Impact of Design Choices 4.1 Hierarchical Learning from Object Parts 4.2 Impact of Surface-Based or Euclidean-Based Representation 4.3 Impact of Over- and Under-Segmentation and Scale 4.4 Application-Specific Considerations 5 Conclusion References Spatially-Constrained Semantic Segmentation with Topological Maps and Visual Embeddings 1 Introduction 2 Related Work 3 Methodology 3.1 Topological Representation 3.2 Structuring Vertices 3.3 Spatial Segmentation 3.4 Semantic Segmentation 4 Experimental Results 5 Conclusion and Future Work References Knowledge-Enabled Generation of Semantically Annotated Image Sequences of Manipulation Activities from VR Demonstrations 1 Introduction 2 Overview 2.1 Virtual Environment 2.2 Recorded Episodes 3 Data Collection 3.1 Episode Replay 3.2 3D Sphere Scan 4 Experiments 5 Related Work 6 Conclusion and Future Work References Make It Easier: An Empirical Simplification of a Deep 3D Segmentation Network for Human Body Parts 1 Introduction 2 Related Work 3 Methods 3.1 Annotation Algorithm 3.2 Segmentation Algorithm 4 Experiments 4.1 Model Selection 4.2 Data Augmentation 4.3 Cross-Validation 5 Conclusion References Video and Motion Analysis Video Popularity Prediction Through Fusing Early Viewership with Video Content 1 Introduction 2 Related Work 3 Proposed Video Popularity Prediction Approach 4 Experimental Results 4.1 Datasets 4.2 Evaluation 5 Conclusion References Action Prediction During Human-Object Interaction Based on DTW and Early Fusion of Human and Object Representations 1 Introduction 2 Related Work 3 DTW-Based Action Prediction 3.1 Feature Extraction 3.2 DTW-Based Time Series Alignment 3.3 Early Fusion of Human and Object Representations 4 Experiments 5 Summary References GridTrack: Detection and Tracking of Multiple Objects in Dynamic Occupancy Grids 1 Introduction 2 Related Work 3 Method 3.1 Bayesian Occupancy Grids 3.2 Semantic Grid 3.3 3D Object Detection 3.4 Grid Tracking Network 3.5 Association 3.6 Training 4 Experiments 4.1 Qualitative Results 4.2 Quantitative Results 5 Conclusion References An Efficient Video Desnowing and Deraining Method with a Novel Variant Dataset 1 Introduction 2 Related Works 2.1 Image-Based Snow/Rain Removal 2.2 Video-Based Snow/Rain Removal 3 Dataset Development 3.1 Videos with Synthetic Snow and Synthetic Rain 3.2 Videos with Quasi-snow 3.3 Videos with Real Snow and Rain 4 Proposed Method 5 Experimental Results and Comparison 5.1 Performance Evaluation 5.2 Failure Cases 6 Conclusion References Computer Vision Systems in Agriculture Robust Counting of Soft Fruit Through Occlusions with Re-identification 1 Introduction 2 Related Work 3 Methods 3.1 Tracking 3.2 Re-identification and Class Description Network 3.3 Tracking Sequences 3.4 Evaluation Metrics 4 Results 5 Conclusion References Non-destructive Soft Fruit Mass and Volume Estimation for Phenotyping in Horticulture 1 Introduction 2 Related Work 3 Methods 3.1 Volume Estimation 3.2 Mass Estimation 4 Experiments and Results 4.1 Data Collection 4.2 Phenotypic Trait Predictions 4.3 In-Field Experiments 5 Discussion 6 Conclusions and Future Work References Learning Image-Based Contaminant Detection in Wool Fleece from Noisy Annotations 1 Introduction 2 Related Work 2.1 Contaminant Detection in Wool 2.2 Semantic Segmentation 3 Semantic Segmentation from Noisy Annotations 3.1 Problem Definition 3.2 Learning Probabilistic Output 4 Wool Datasets 5 Experiments 5.1 Implementation Details 5.2 Results and Discussion 6 Conclusion References Active Learning for Crop-Weed Discrimination by Image Classification from Convolutional Neural Network\'s Feature Pyramid Levels 1 Introduction 2 Literature Review 2.1 Robotic Weeding 2.2 Active Learning 2.3 Convolutional Neural Networks and Features Pyramid Network 3 Proposed Method 3.1 Workflow Description 3.2 Model Training Setup 4 Experimental Setup 5 Experimental Evaluation 6 Conclusions and Future Work References Author Index