دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: L. Sharma, M. Carpenter سری: ISBN (شابک) : 2021052518, 9781032154404 ناشر: سال نشر: 2022 تعداد صفحات: 319 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب Computer Vision and Internet of Things: Technologies and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب چشم انداز کامپیوتر و اینترنت اشیا: فناوری ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Editors List of Contributors Acknowledgement Part 1 Introduction to Computer Vision and Internet of Things 1. Rise of Computer Vision and Internet of Things 1.1 Introduction 1.2 Evolution of CV and IoT 1.3 Evolving Toward CV and IoT 1.4 Enhancement of IoT Using CV and 5G Technology 1.5 Challenging Issue 1.6 CV and IoT in Real-Time Applications 1.6.1 Autonomous Vehicles 1.6.2 Healthcare System 1.6.2.1 Precise Diagnosis 1.6.2.2 Timely Detection of Illness 1.6.2.3 Facial Recognition 1.6.3 CV-Based Agriculture 1.6.3.1 Drone-Based Monitoring and Smarter Farming 1.6.3.2 Yield Analysis 1.6.3.3 Crop Grading and Sorting 1.6.3.4 Automated Pesticide Spraying and Phenotyping 1.6.3.5 Forest Information 1.6.4 Less Traffic Congestion 1.6.5 Smart Parking 1.6.6 Object Detection and Tracking 1.7 Conclusion References 2. IoE: An Innovative Technology for Future Enhancement 2.1 Introduction 2.2 IoT and Its Present Perspectives 2.3 IoE—Its Role and Responsibility 2.4 Interplay between IoE and IoT 2.5 Security in IoE 2.6 Role and Importance of IoE 2.7 France: IoE Smart City Pilot 2.8 Conclusion References 3. An Overview of Security Issues of Internet of Things 3.1 Introduction 3.2 Literature Review 3.3 Smart IoT Devices 3.4 Major Security Issues of IoT Devices 3.5 Threats to Security 3.5.1 Vulnerabilities 3.5.2 Attack 3.6 Purpose of IoT Attacks 3.7 Classification of Intruders 3.8 Conclusion References 4. Use of Robotics in Real-Time Applications 4.1 Introduction 4.2 Related Work 4.3 Current Challenging Issues 4.4 Different Areas of Robotics in Real-Time Applications 4.5 Conclusion References Part 2 Tools and Technologies of IoT with Computer Vision 5. Preventing Security Breach in Social Media: Threats and Prevention Techniques 5.1 Introduction 5.2 Related Research Work 5.3 Importance of Social Media 5.4 Privacy and Network Threats in Social Media 5.4.1 Classic Threats 5.4.2 Modern Threats 5.4.3 Combination Threats 5.4.4 Threats Targeting Children 5.5 Prevention Techniques and Strategies 5.5.1 Never Connect to Open Wi-Fi Networks 5.5.2 Check Before You Post 5.5.3 Limit the Number of People 5.5.4 Avoid Rumors 5.5.5 Use New Authentication Techniques 5.5.6 Use of Antivirus 5.5.7 Make Password Strong 5.5.8 Keep Software Update 5.5.9 Analyze the Setting 5.5.10 Observe Your Children 5.6 Future Scope 5.7 Conclusion References 6. Role of Image Processing in Artificial Intelligence and Internet of Things 6.1 Introduction 6.2 Image Processing 6.3 AI Solutions for Image Processing 6.3.1 OpenCV 6.3.2 TensorFlow 6.3.3 Keras 6.3.4 VXL 6.3.5 AForge.NET 6.4 Advantages of the Use of AI in Image Processing 6.5 Challenges of AI in Image Processing 6.6 Image Processing in IoT 6.7 Conclusion References 7. Computer Vision in Surgical Operating Theatre and Medical Imaging 7.1 Introduction 7.2 Evolution of CV 7.3 Medical Imaging Techniques 7.3.1 X-Ray 7.3.2 Computed Tomography (CT) 7.3.3 Magnetic Resonance Imaging (MRI) 7.3.4 Diagnostic Medical Sonography 7.4 Digital Imaging Standards in MI 7.4.1 Digital Imaging and Communication in Medicine 7.4.2 Picture Archiving and Communication System 7.5 CV Algorithms Used in MI 7.5.1 Classification 7.5.2 Localization 7.5.3 Segmentation 7.6 Use Cases AI and CV in MI 7.6.1 Diagnostic Assistance 7.6.2 Screening and Sortation 7.6.3 Monitoring 7.6.4 Charting 7.7 Application of CV in Imaging 7.7.1 Cardiovascular Image Analysis 7.7.2 Oncology 7.7.3 Ophthalmology 7.7.4 Neurology 7.7.5 Orthopedic 7.7.6 Emergency Medicine 7.7.7 MRI Brain Interpretation 7.7.8 X-Ray Analysis 7.7.9 Surgery 7.8 Critical Success Factor 7.8.1 Accuracy 7.8.2 Seamless Integration 7.8.3 Training 7.8.4 Productivity Metrics 7.8.5 Data Security 7.9 CV in Surgery and MI 7.9.1 Understanding of Surgical Procedure 7.9.2 Object Detection 7.9.3 Object Tracking or Computer-Assisted Navigation 7.10 Deployment Issues of Vision-Based Systems 7.11 Conclusion References Part 3 IoT with Computer Vision for Real-Time Applications 8. Self-Driving Cars: Tools and Technologies 8.1 Introduction 8.2 Tools and Technologies 8.2.1 Car Navigation System 8.2.2 Location System 8.2.3 Electronic Map 8.2.4 Map Matching 8.2.5 Global Path Planning 8.2.6 Environment Perception 8.2.7 Laser Perception 8.2.8 Radar Perception 8.2.9 Visual Perception 8.3 Vehicle Control 8.4 Vehicle Control Method 8.5 Comparison between Camera and LIDAR 8.6 Disadvantages of Self Driving Cars 8.7 Legal Issue 8.8 Conclusion References 9. IoT and Remote Sensing 9.1 Background of Internet of Things 9.2 Background of Remote Sensing 9.3 Process of Remote Sensing 9.4 IoT-Based Remote Sensing Sensor Systems 9.4.1 IoT-Enabled Passive Sensors 9.4.2 IoT-Enabled Active Sensors 9.5 Remote Sensing and Its Types 9.6 Data Acquisition and Data Interpretation 9.6.1 Data Acquisition 9.6.2 Data Interpretation 9.7 Application Areas of IoT in Remote Sensing 9.7.1 Mineral Exploration 9.7.2 Disaster Management 9.7.3 History and Archeology 9.7.4 Environmental Observations 9.7.5 Land Cover Analysis 9.8 IoT and GIS 9.8.1 Real-Time GIS and IoT 9.8.2 Capabilities of Real-Time GIS Platform 9.9 IoT and GPS 9.10 Future Scope 9.11 Conclusion References 10. Synthetic Biology and Artificial Intelligence 10.1 Introduction 10.2 CRISTA Method of Machine Learning 10.2.1 Data Labeling 10.2.2 Prediction Targeted Activity 10.2.3 Prediction Non-Targeted Activity 10.2.4 Data Scattering 10.2.5 Selecting Data 10.2.6 Setting Data into Machine-Readable Form 10.2.7 Algorithm Selection 10.2.8 Predicting CRISPR Target Activity: GNL Scorer 10.2.9 Insight in CRISPR ML Models and Way of Minimization Errors 10.3 Possible Consequences of CRISPR Technology 10.3.1 Recent Investigations on Unnatural Nuclear Pairs and Exciting Near Future 10.3.2 Enormous Potential of CRISPR Technology and Its Ethic Controversies 10.4 Conclusions References 11. Innovation and Emerging Computer Vision and Artificial Intelligence Technologies in Coronavirus Control 11.1 Introduction 11.2 Background 11.3 Computer Vision (CV) Technology 11.4 Computer Vision for Covid-19 Diagnosis 11.4.1 X-Ray Radiography (CXR) 11.4.2 Computed Tomography (CT) 11.5 Computer Vision for Covid-19 Prevention 11.5.1 Face Mask Detection 11.5.2 Thermal Imaging 11.5.3 Drones in Covid-19 11.5.4 Germ Scanning 11.6 Face Mask Detection Framework 11.7 AI Vision for Covid-19 Treatment 11.7.1 Disease Progression Score 11.7.2 Depth Cameras and DL 11.7.3 Support Vaccination Development 11.8 AI Vision for Ventilation Management in Intensive Care Unit (ICU) 11.9 Future of Emerging AI Technologies 11.10 Conclusion References 12. State of the Art of Artificial Intelligence in Dentistry and Its Expected Future 12.1 Introduction 12.2 The Main Challenge in the Use of Virtual Reality in Dentistry 12.3 Fundamentals of Artificial Intelligence and Its Performances in Dentistry 12.4 Some Examples of the Application of Artificial Intelligence in Dentistry 12.5 Applications in Dental and Maxillofacial Radiology 12.6 Other Applications 12.7 Conclusions References 13. Analysis of Machine Learning Techniques for Airfare Prediction 13.1 Introduction 13.2 Background 13.3 Looking into the Data by the Team 13.4 Data Collection and Preprocessing 13.4.1 Dataset 13.4.2 Understanding Data and Preprocessing. 13.4.3 Extracting Derived Features from the Data 13.4.4 Handling Categorical Data and Feature Encoding 13.4.5 Analysis of Dataset 13.5 Analysis of Machine Learning Techniques 13.5.1 Random Forest 13.5.2 Linear Regression 13.5.3 Decision Tree 13.5.4 K-Nearest Neighbor (KNN) Algorithm 13.6 Algorithms Implementation and Evaluation 13.6.1 Random Forest Algorithm 13.6.2 Linear Regression Algorithm 13.6.3 Decision Tree Algorithm 13.6.4 K-Nearest Neighbor Algorithm 13.7 Limitations 13.8 Conclusion 13.9 Future Work References Part 4 Challenging Issues and Novel Solutions 14. CapsNet and KNN-Based Earthquake Prediction Using Seismic and Wind Data 14.1 Introduction 14.2 Literature Review 14.3 Methodology 14.3.1 KNN Method 14.3.2 CapsNet 14.4 Experimental Setup and Result Discussion 14.4.1 Datasets Used 14.4.2 Result Comparison 14.5 Conclusion References 15. Computer-Aided Lung Cancer Detection and Classification of CT Images Using Convolutional Neural Network 15.1 Introduction 15.2 Literature Survey 15.3 Proposed System 15.3.1 Flow of Proposed System 15.3.2 Morphological Operation 15.3.3 Design of the Proposed System 15.4 Experimental Setup of the Proposed System 15.4.1 Dataset 15.4.2 Pre-Processing 15.4.3 Image Segmentation 15.4.4 Convolutional Neural Network (CNN) 15.4.5 Proposed CNN Model for Lung CT Classification 15.4.6 Data Augmentation 15.5 Performance Evaluation 15.6 Experimental Results 15.7 Comparison 15.8 Discussion 15.9 Conclusion Acknowledgments References 16 Real-Time Implementations of Background Subtraction for IoT Applications 16.1 Introduction 16.2 Background Subtraction: A Short Preliminary Overview 16.3 GPU Implementations 16.4 Embedded Implementations 16.5 Specific Architectures 16.5.1 Digital Signal Processor 16.5.2 Very Large Scale Integration 16.5.3 Field-Programmable Gate Array 16.6 Parallel Implementations 16.7 Programming Languages 16.8 Low-Complexity Strategies 16.9 Fog Computing and Edge Computing 16.10 Conclusion Acknowledgments References 17. The Role of Artificial Intelligence in E-Health: Concept, Possibilities, and Challenges 17.1 Introduction 17.2 Artificial Intelligence (AI) 17.3 Types of Artificial Intelligence 17.4 AI in E-Health 17.5 Limitations of Artificial Intelligence (AI) 17.5.1 The Confusion Matrix 17.5.2 ROC Curve 17.6 Literature Survey 17.7 Current Era of Artificial Intelligence and Its Impact on E-Health 17.8 Artificial Intelligence Techniques 17.8.1 Machine Learning 17.8.2 Types of Machine Learning 17.8.2.1 Supervised Learning 17.8.2.2 Unsupervised Learning 17.8.2.3 Semi-Supervised Learning 17.8.3 Machine Learning in E-Health 17.8.4 Deep Learning 17.8.4.1 Deep Learning in E-Health 17.9 Healthcare Data and Databases 17.10 Ideas, Possibilities, and Challenges 17.11 Conclusions References Index