دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Jason Callaway
سری:
ناشر:
سال نشر: 2020
تعداد صفحات: [323]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب COMPUTER PROGRAMMING 4 Books In 1: Data Science, Hacking with Kali Linux, Computer Networking for Beginners, Python Programming به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب برنامه نویسی کامپیوتری 4 کتاب در 1: علم داده، هک با کالی لینوکس، شبکه های کامپیوتری برای مبتدیان، برنامه نویسی پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
زبان کدنویسی برای یادگیری ماشین و هوش مصنوعی.
Coding Language for Machine Learning and Artificial Intelligence.
BOOK 1: Python for Data Science Chapter 1: Introduction to Data Analysis Python for Data Science Why Select Python Python vs. R Widespread Application of Data Analysis Clarity Types of Data Analysis Descriptive Analysis Predictive Analysis Prescriptive Analysis Why Data Analysis Is on the Rise? Summary of the Data Science Process Prerequisite and Reminders Do You Need Some Expertise in Mathematics? Chapter 2: Python Review Properties Getting help Data Analysis vs. Data Science vs. Machine Learning Possibilities Drawbacks of Data Analysis & Machine Learning Accuracy & Performance Chapter 3: Important Python Libraries Install the Software and Setting Up For Windows Numpy Arrays Using IPython as a Shell Web Scraping Using Python Libraries Web Scraping Matplotlib 2nd generation Chapter 4: Data Manipulation 6 Key Things You Need to Know About Numpy and Pandas Getting Started with Numpy Array Indexing Array Slicing Array Concatenation Getting Started with Pandas Importing Data Missing Data Visualize the Data Transformation of Feature Chapter 5: Data Aggregation Definition of Data Frame Split-Apply-Combine Implementation How to Group Data Frames? Chapter 6: Data Visualization Data Visualization to the End-User Matplotlib Line Chart Histogram Bar Chart Visualization Using Pandas The Objective of Visualization The Simplest Method to Complex Visualization of Data Overview of Plotly Building Attractive Plots Using Plotly Scatter Plots Box Plots Heat Maps Chapter 7: Machine Learning Machine Learning Algorithms Classifications Supervised Learning Unsupervised Learning Reinforcement Learning How to Approach a Problem What is Deep Learning Neural Networks with Scikit-Learn The Structure of Neuron Back Propagation Scikit-Learn The Neural Networks Using TensorFlow TensorFlow Preparing the Environment Installing Scikit-Learn Import Scikitlearn Installing TensorFlow Chapter 8: Artificial Neural Networks How the Brain Works Constraints and Opportunities Let’s See an Example Chapter 9: How to use Scikit-Learn Loading Datasets Simple Linear Regression Import Libraries Data Preparation Training the Algorithm Predicting Evaluating the Accuracy Multiple Linear Regression Data Preparation Training the Algorithm Predicting Evaluating the Accuracy Chapter 10: K-Nearest Neighbors Algorithm Splitting the Dataset Feature Scaling Training the Algorithm Evaluating the Accuracy K Means Clustering Data Preparation Visualizing the Data Creating Clusters Chapter 11: Classification Logistics Regression K-Nearest Neighbors The Decision Tree Classification Random Forest Classification Clustering Objectives and Function of Clustering K-Means Clustering Anomaly Detection Chapter 12: Association Rule Learning Explanation Apriori Chapter 13: Reinforcement Learning What is Reinforcement Learning? Comparison with Supervised & Unsupervised Learning Applying Reinforcement Learning Mastering the Bagging Method How to Do It Conclusion BOOK 2: Hacking With Kali Linux Chapter 1: Basics of hacking Chapter 2: What is Ethical Hacking? Chapter 3: Cyber Security Chapter 4: Linux Architecture Chapter 5: Basics of Linux Operating System Chapter 6: Basic Linux Commands Chapter 7: Characteristics of Kali Linux and Why It Is So Important In The Hacking World Chapter 8: Installation of Kali Linux Chapter 9: Applications and Use of Kali Linux Chapter 10: Different Tools of Kali Linux Chapter 11: How can Kali Linux be Used For Hacking? Chapter 12: Techniques of Port Scanning using Kali Linux Chapter 13: Penetration Testing Chapter 14: VPN Chapter 15: Firewall Chapter 16: Cryptography Conclusion BOOK 3: COMPUTER NETWORKING FOR BEGINNERS Introduction Chapter 1: Computer networking: An Introduction Networking Essentials Networks Types The OSI Model Computer Network Components Basic Network Troubleshooting Chapter 2: Network Management Hardware Management and Maintenance Virtualization in Cloud Computing The Concept behind Virtualization Chapter 3: Computer Network Communication Technologies How computers communicate in a network Understanding Ethernet Peer-to-Peer Communication Chapter 4: The Internet Internet basics Sub-net Mask Private Networks Chapter 5: Router and Server Basics Routing Types Network Servers Understanding VLAN Chapter 6: IP addressing and IP sub-netting What is an IP address? IP Sub-netting IPv4 vs. IPv6 Chapter 7: Introduction to Cisco System and CCNA Certification Chapter 8: Fundamentals of Network Security Network Intruders What can be done about these threats? Network security best practices Chapter 9: Wireless Technology and Security Chapter 10: Introduction to Machine Learning: A Computer Networking Perspective What is Machine Learning? Machine Learning in Analytics Machine Learning in Management Machine Learning in Security Conclusion BOOK 4: Python Programming Introduction Chapter 1: What is the Python Language, and Why Should I Use It? How to Use Python The Benefits of Python Chapter 2: How Can I Install Python on My Computer? Installing Python on Mac OS X Python – V Python3 – V Installing Python on a Windows System Installing Python on a Linux Operating System Chapter 3: The Basics of the Python Code The Keywords Looking at the Comments The Importance of Variables Bringing in Python Strings The Python Functions The Operators Chapter 4: The Different Data Types in Python Chapter 5: The Python Functions The Different Types of Functions The Advantages of Python Functions The Syntax of the Function Chapter 6: How to Write Your Own Conditional Statements Starting with the If Statement Moving to the If Else Statements Finishing Off with the Elif Statements Chapter 7: The Python Classes and How to Write Your Own Chapter 8: Handling Files in Python Creating Our Own New Files Can I Create a Binary File? How to Open a File How to Seek One of the Files Chapter 9: Tips and Tricks to Get the Most Out of Python Comment Out the Code Print Things Out Work with the Code You Know Will Behave Read All of the Error Messages Run the Code Often Take a Break When Needed Ask for Help Chapter 10: A Quick Introduction to Data Analysis Define the Question Pick Out the Important Measuring Options Collect the Data Look Through and Analyze the Data Interpret the Results Chapter 11: Some of the Best Python Algorithms for Data Analysis Neural Networks Clustering Support Vector Machines Naïve Bayes Decision Trees Conclusion