دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Jiří Mikyška (editor), Clélia de Mulatier (editor), Maciej Paszynski (editor), Valeria V. Krzhizhanovskaya (editor), Jack J. Dongarra (editor), Peter M.A. Sloot (editor) سری: ISBN (شابک) : 3031360206, 9783031360206 ناشر: Springer سال نشر: 2023 تعداد صفحات: 758 [751] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 64 Mb
در صورت تبدیل فایل کتاب Computational Science – ICCS 2023: 23rd International Conference, Prague, Czech Republic, July 3–5, 2023, Proceedings, Part II (Lecture Notes in Computer Science, 14074) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علوم محاسباتی – ICCS 2023: بیست و سومین کنفرانس بین المللی، پراگ، جمهوری چک، 3 تا 5 ژوئیه، 2023، مجموعه مقالات، قسمت دوم (یادداشت های سخنرانی در علوم کامپیوتر، 14074) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مجموعه پنج جلدی LNCS 14073-14077 مجموعه مقالات بیست و سومین کنفرانس بین المللی علوم محاسباتی، ICCS 2023، در پراگ، جمهوری چک، طی 3 تا 5 ژوئیه 2023 برگزار شد. مجموع 188 مقاله کامل و 94 مقاله کوتاه ارائه شده است. در این مجموعه کتاب به دقت بررسی و از بین 530 مورد ارسالی انتخاب شد. 54 مقاله کامل و 37 مقاله کوتاه در مسیر اصلی پذیرفته شد. 134 مقاله کامل و 57 مقاله کوتاه در کارگاهها/آهنگهای موضوعی پذیرفته شد. موضوع سال 2023، \"محاسبات در لبه برش علم\"، نقش علم محاسباتی را در کمک به تحقیقات چند رشته ای برجسته می کند. این کنفرانس یک رویداد منحصر به فرد با تمرکز بر پیشرفت های اخیر در الگوریتم های علمی مقیاس پذیر، ابزارهای نرم افزاری پیشرفته بود. شبکه های محاسباتی؛ روش های عددی پیشرفته؛ و زمینه های کاربردی جدید. این مدلها، الگوریتمها و ابزارهای بدیع، علم جدید را از طریق کاربرد کارآمد در سیستمهای فیزیکی، زیستشناسی محاسباتی و سیستمها، سیستمهای محیطی، مالی و غیره هدایت میکنند.
The five-volume set LNCS 14073-14077 constitutes the proceedings of the 23rd International Conference on Computational Science, ICCS 2023, held in Prague, Czech Republic, during July 3-5, 2023. The total of 188 full papers and 94 short papers presented in this book set were carefully reviewed and selected from 530 submissions. 54 full and 37 short papers were accepted to the main track; 134 full and 57 short papers were accepted to the workshops/thematic tracks. The theme for 2023, \"Computation at the Cutting Edge of Science\", highlights the role of Computational Science in assisting multidisciplinary research. This conference was a unique event focusing on recent developments in scalable scientific algorithms, advanced software tools; computational grids; advanced numerical methods; and novel application areas. These innovative novel models, algorithms, and tools drive new science through efficient application in physical systems, computational and systems biology, environmental systems, finance, and others.
Preface Organization Contents – Part II ICCS 2023 Main Track Full Papers (Continued) Automated Identification and Location of Three Dimensional Atmospheric Frontal Systems 1 Introduction 2 Data 2.1 Atmospheric Data 2.2 Frontal Types 3 Methods 3.1 Surface Front Detection 3.2 Cross Sections 3.3 Extension to Other Pressure Levels 3.4 Scoring Function 3.5 Final Processing 4 Results 4.1 Probability Density Distribution of Temperature Difference 4.2 Temperature Difference at Various Levels 4.3 Evaluation of Frontal Inclination 4.4 Runtime 4.5 Potential Extensions 5 Conclusions and Future Work References Digital Twin Simulation Development and Execution on HPC Infrastructures 1 Motivation 2 Typical Requirements of Digital Twins Simulation 3 A Critical Review of Platforms for Digital Twins 4 The Concept of a Universal Platform for Digital Twins 5 Overview of Implementation 6 Example of Usage - The BoneStrength Application 7 Evaluation - Assessment of Proof of Concept 8 Conclusions and Future Work References Numerical Simulation of the Octorotor Flying Car in Sudden Rotor Stop 1 Introduction 2 Numerical Approach 2.1 Governing Equation 2.2 Unstructured Moving-Grid Finite-Volume Method 2.3 Sliding Mesh Approach 2.4 Coupled Computation 3 Flight Simulation of Flying Car 3.1 Computational Model 3.2 Computational Conditions 3.3 Control Method 4 Calculation Results 4.1 Stopping FLU 4.2 Stopping FLU-FLL 4.3 No Rotation Speed Limit in Stopping FLU-FLL 5 Conclusions References Experimental Study of a Parallel Iterative Solver for Markov Chain Modeling 1 Introduction 2 Mathematical Background 3 Numerical Experiments 4 Conclusions References Impact of Mixed-Precision: A Way to Accelerate Data-Driven Forest Fire Spread Systems 1 Introduction 2 Mixed-Precision Methodology 3 Experimental Study and Results 4 Conclusions References RL-MAGE: Strengthening Malware Detectors Against Smart Adversaries 1 Introduction 2 Adversarial Attack and Defense 2.1 Proposed RL-MAGE Framework 2.2 Malware Evasion Attack (MEA) 2.3 Adversarial Retraining Defense (ARShield) 3 Experimental Setup 3.1 Performance Metrics 4 Experimental Results 4.1 Baseline Android Malware Detection Models 4.2 Adversarial Attack on Malware Detection Models 4.3 ARShield Defense Strategy 5 Related Work 6 Conclusion References Online Runtime Environment Prediction for Complex Colocation Interference in Distributed Streaming Processing 1 Introduction 2 Motivation 2.1 Interference Characteristics of Operator Colocation to Runtime Environment 2.2 Importance of Interference of Operator Colocation to Runtime Environment 3 Design and Implementation 3.1 Overview 3.2 OIProfiler: Operator Interference Profiler 3.3 CILearner: Colocation Interference Learner 3.4 REPredictor: Runtime Environment Predictor 4 Experiments 4.1 Settings and Datasets 4.2 Evaluation 5 Conclusion References ICCS 2023 Main Track Short Papers On the Impact of Noisy Labels on Supervised Classification Models 1 Introduction 2 Materials and Methods 3 Experimental Results 4 Conclusions References Improving Patients' Length of Stay Prediction Using Clinical and Demographics Features Enrichment 1 Introduction 2 Related Work 3 Methodology 3.1 Dataset and Exploratory Analysis of Vermont Dataset 3.2 Data Processing and Feature Engineering 4 Experiments 4.1 Constructing Model to Predict LOS 4.2 Results 5 Discussion 6 Conclusion and Future Work References Compiling Tensor Expressions into Einsum*-1pc 1 Introduction 2 Understanding Einsum Notation 3 A Language for Tensor Expressions 4 Transformation and Compilation into Einsum 5 Conclusion References r-softmax: Generalized Softmax with Controllable Sparsity Rate 1 Introduction 2 Sparse Version of Softmax 3 Experiments 3.1 Alternative to Softmax in Multi-label Classification 3.2 Alternative to Softmax in the Self-attention Block in Transformer-Based Model 4 Conclusions References Solving Uncertainly Defined Curvilinear Potential 2D BVPs by the IFPIES 1 Introduction 2 Modelling Uncertainties in the IFPIES 3 Solving the IFPIES 4 Numerical Results 5 Conclusions References Improving LocalMaxs Multiword Expression Statistical Extractor 1 Introduction 2 Improvement to LocalMaxs Statistical Extractor 2.1 Background on MWE Statistical Extraction 2.2 The Previous Version 2.3 The Improved Version of LocalMaxs 2.4 Experimental Evaluation of the Improved LocalMaxs Version 3 Identifying the Set of Stopwords in Corpora 4 Conclusions References PIES in Multi-region Elastic Problems Including Body Forces 1 Introduction 2 PIES for Elasticity with Body Forces 3 Multi-region Formulation 4 Modeling of Regions 5 Tested Examples 5.1 Example 1 5.2 Example 2 6 Conclusions References Fine-Tuning Large Language Models for Answering Programming Questions with Code Snippets 1 Introduction 2 Dataset 3 Methods 3.1 Large Language Models 3.2 Fine-Tuning, Prompt Engineering, and Data Preprocessing 3.3 Evaluation Procedure 4 Results 5 Conclusion References Introducing a Computational Method to Retrofit Damaged Buildings under Seismic Mainshock-Aftershock Sequence 1 Introduction 2 Modeling of Structures 3 Computational Method 4 Retrofitting Damaged Building 5 Conclusion References Hierarchical Classification of Adverse Events Based on Consumer’s Comments 1 Introduction 2 Materials and Methods 2.1 Dataset 2.2 Data Processing 2.3 Classification 3 Results 4 Discussion and Conclusions References Estimating Chlorophyll Content from Hyperspectral Data Using Gradient Features 1 Introduction 2 Materials and Methods 2.1 Dataset 2.2 Estimating Chlorophyll Content Using Machine Learning 3 Experimental Validation 4 Conclusions References Image Recognition of Plants and Plant Diseases with Transfer Learning and Feature Compression 1 Introduction 2 Related Work 3 Datasets 4 Proposed Approach 5 Experiments and Results 6 Conclusions References TwitterEmo: Annotating Emotions and Sentiment in Polish Twitter 1 Introduction 2 Related Works 3 Data Gathering 3.1 Data Source and Preprocessing 3.2 Annotation Methodology and Guidelines 3.3 Positive Specific Agreement 3.4 Rendering the Final Annotation 4 Data Analysis 4.1 Overall Results 4.2 Co-occurrence of Emotions 4.3 Distribution of Sentiment Over Time 4.4 Co-occurrence of Emotions and Sentiment 5 Experiments 5.1 Sentiment Analysis 5.2 Emotion Recognition 6 Conclusions References Timeseries Anomaly Detection Using SAX and Matrix Profiles Based Longest Common Subsequence 1 Introduction 2 Related Works 2.1 Review of Anomaly Detection-Based SAX Approaches 2.2 Review of the Longest Common Subsequence (LCS) Method 3 Proposed Method 4 Experimental Results 4.1 Anomaly Detection on the Tested Datasets 4.2 Performance Evaluation 5 Conclusion References Korpusomat.eu: A Multilingual Platform for Building and Analysing Linguistic Corpora 1 Introduction 2 Korpusomat: Creating Universal Dependencies Corpora 3 Computational Architecture 3.1 Processing Pipelines 3.2 Index and Search 4 Computational Performance Benchmarks 5 Applying Korpusomat to Multilingual Multidisciplinary Research: A Case Study 6 Conclusions and Future Work References What Will Happen When We Radically Simplify t-SNE and UMAP Visualization Algorithms? Is It Worth Doing So? 1 Introduction 2 Simplifying t-SNE and UMAP 2.1 Evaluation Criteria 2.2 t-SNE with Euclidean and Binary Distances 2.3 UMAP with a Low Negative Sample Rate and a Small Number of Nearest Neighbours 3 Improvements in the IVHD Algorithm 4 Experiments 5 Conclusions References Fast Electromagnetic Field Pattern Calculation with Fourier Neural Operators 1 Introduction 2 Methodology 2.1 Simulation Setup and Dataset Generation with Meep 2.2 Fourier Neural Operator Architecture 3 Results 4 Discussion and Conclusions References Elements of Antirival Accounting with sNFT 1 Introduction 2 On Open DLTs and Antirival Goods 3 Methodology 4 Model Description 5 Discussion References Learning Shape-Preserving Autoencoder for the Reconstruction of Functional Data from Noisy Observations 1 Introduction 2 Derivation of the Proposed Autoencoder 3 Selecting N Using the Autoencoder References Attribute Relevance and Discretisation in Knowledge Discovery: A Study in Stylometric Domain 1 Introduction 2 Characteristics of Input Space and Data Mining 3 Procedure for Ranking Driven Discretisation 4 Experiments 4.1 Preparation of Input Stylometric Datasets 4.2 Rankings of Characteristic Features 4.3 Employed Discretisation Algorithms 4.4 Classification Process and Evaluation of Performance 5 Conclusions References Bayesian Networks for Named Entity Prediction in Programming Community Question Answering 1 Introduction 2 Methodology 2.1 Problem Statement 2.2 Dataset 2.3 Semantic Entities Recognition 2.4 Bayesian Networks 3 Results 3.1 Comparison of Evaluation Metrics 3.2 Visual DAG Representation 3.3 Predictions Analysis 4 Discussion and Conclusion References Similarity-Based Memory Enhanced Joint Entity and Relation Extraction 1 Introduction 2 Related Work 3 Approach 3.1 Memory Reading 3.2 Memory Writing 3.3 Training 4 Experiments 5 Results 6 Conclusions and Future Work References Solving Complex Sequential Decision-Making Problems by Deep Reinforcement Learning with Heuristic Rules 1 Introduction 2 Modifying A3C to Incorporate Heuristic Rules 3 Heuristic Rules to Encode Human Expertise 3.1 Heuristic Rules for the River Raid Game 3.2 Generalizing to Other Problems 4 Experimental Results 5 Conclusions References Weighted Hamming Metric and KNN Classification of Nominal-Continuous Data 1 Introduction 2 Related Works 3 Determining the Weights 4 Numerical Experiments 4.1 Australian Credit Approval 4.2 Heart Disease 4.3 Artificial Dataset 5 Conclusion and Future Work References Application of Genetic Algorithm to Load Balancing in Networks with a Homogeneous Traffic Flow 1 Introduction 2 Problem Formulation and Proposed Solution 2.1 SDNGALB Algorithm Description 3 Experimental Setup and Results 4 Concluding Remarks References Automatic Structuring of Topics for Natural Language Generation in Community Question Answering in Programming Domain 1 Introduction 2 Related Works 3 Data 4 Methods 4.1 Thematic Modeling 4.2 Text Generation 5 Results 6 Conclusion References Modelling the Interplay Between Chronic Stress and Type 2 Diabetes On-Set 1 Introduction 2 Methods 2.1 Model Definitions 2.2 Algorithm Definitions 3 Results 4 Discussions and Conclusions References How to Select Superior Neural Network Simulating Inner City Contaminant Transport? Verification and Validation Techniques 1 Introduction 2 ANN Model 3 Domain, Training, and Testing Dataset. Data Preprocessing 4 ANN Model Validation 5 Results 6 Summary References DeBERTNeXT: A Multimodal Fake News Detection Framework 1 Introduction 2 Literature Review 3 Methodology 4 Experimentation and Results 5 Conclusion References Optimization and Comparison of Coordinate- and Metric-Based Indexes on GPUs for Distance Similarity Searches 1 Introduction 2 Background: Comparison of GDS-Join and COSS 3 Experimental Evaluation 3.1 Experimental Methodology 3.2 Results 4 Discussion and Conclusions References Sentiment Analysis Using Machine Learning Approach Based on Feature Extraction for Anxiety Detection 1 Introduction 2 Related Research 3 Proposed Method 4 Results and Discussion 5 Conclusions References Efficiency Analysis for AI Applications in HPC Systems. Case Study: K-Means 1 Introduction 2 Related Works 3 Efficiency Analysis Model over Application Phases 4 Experimental Results 5 Conclusions References A New Algorithm for the Closest Pair of Points for Very Large Data Sets Using Exponent Bucketing and Windowing 1 Introduction 2 Proposed Algorithm with Oexp(N) Complexity 3 Algorithm Analysis 4 Experimental Results 5 Conclusions References Heart Rate-Based Identification of Users of IoT Wearables: A Supervised Learning Approach 1 Introduction 2 Related Work 3 Datasets for Classification 4 Methodology - Heart Rate Based Identification 5 Results and Discussion 6 Conclusion and Future Work-0.3em References Transferable Keyword Extraction and Generation with Text-to-Text Language Models 1 Introduction 2 Overview of KEG Datasets 3 Evaluation of Text-to-text Models for KEG References Adsorption and Thermal Stability of Hydrogen Terminationṇ on Diamond Surface: A First-Principles Study 1 Introduction 2 Calculation Methods 3 Results and Discussion 3.1 Adsorption Properties of Hydrogen Atoms on Diamond Surface 3.2 Electronic Structure and Band Structure 3.3 Thermal Stability of Hydrogen Atoms on Diamond Surface 4 Conclusions References Exploring Counterfactual Explanations for Predicting Student Success 1 Introduction and Background 2 Predicting Student Success 2.1 Dataset and Pre-processing 2.2 Modelling Approach and Evaluation 3 Counterfactual Generation and Analysis 4 User Study 5 Conclusion A Appendix References Advances in High-Performance Computational Earth Sciences: Applications and Frameworks Development of 3D Viscoelastic Crustal Deformation Analysis Solver with Data-Driven Method on GPU*-1pc 1 Introduction 2 Target Problem 3 Base Multi-grid Solver with Data-Driven Predictor 3.1 Data-Driven Predictor 3.2 Multi-grid Solver with Data-Driven Predictor 4 GPU-Based Multi-grid Solver with Data-Driven Predictor 4.1 Data-Driven Predictor Enhanced by Memory Footprint Reduction Method 4.2 Multi-grid Solver Enhanced by Multi-vector Computation 5 Performance Measurement 5.1 Performance Measurement Settings 5.2 GPU Kernel Performance 5.3 Solver Performance 6 Application Example 7 Conclusions References Implementation of Coupled Numerical Analysis of Magnetospheric Dynamics and Spacecraft Charging Phenomena via Code-To-Code Adapter (CoToCoA) Framework*-1pc 1 Introduction 2 Physical Models to be Coupled 2.1 Target Physical Phenomena 2.2 Magnetospheric Simulation 2.3 Spacecraft Charging Simulation 3 Code-To-Code Adapter: CoToCoA 3.1 Overview of the Framework 3.2 Asynchronous Control of Coupled Programs 3.3 Inter-code Exchange of Numerical Data 4 Implementation of Coupled Analysis 5 Case Study and Performance Evaluation 6 Conclusions References Artificial Intelligence and High-Performance Computing for Advanced Simulations Improving Group Lasso for High-Dimensional Categorical Data*-1pc 1 Introduction 2 Linear Models and the Algorithm 2.1 Notations 2.2 The Algorithm 3 Statistical Properties of PDMR 4 Experiments 4.1 Simulation Study 4.2 Real Data Study 5 Conclusions References Actor-Based Scalable Simulation of N-Body Problem 1 Introduction 2 Existing Efficient N-Body Solutions 3 The Proposed Actor-Based Models 3.1 Problem-Driven Actor Model 3.2 Computation-Driven Actor Model 3.3 Limited-Communication Actor Model 4 Experimental Evaluation 4.1 Correctness Evaluation 4.2 Simulation Performance 4.3 Strong Scalability 4.4 Weak Scalability 5 Conclusion References Intracellular Material Transport Simulation in Neurons Using Isogeometric Analysis and Deep Learning 1 Introduction 2 Methodology and Results 3 Conclusion References Chemical Mixing Simulations with Integrated AI Accelerator 1 Introduction 2 Related Work 3 Chemical Mixing Simulations 4 AI Accelerator for CFD Simulations 4.1 Basic Scheme of AI-Accelerated Simulations 4.2 New Method of Integrating AI Prediction with a CFD Solver: AI Supervisor 4.3 AI Model for CFD Acceleration 4.4 Dataset 5 Experimental Results 5.1 Testing Platform 5.2 Accuracy Results 5.3 Performance Results 6 Conclusion References Memory-Based Monte Carlo Integration for Solving Partial Differential Equations Using Neural Networks 1 Introduction 2 Approximation with Neural Networks 3 Memory-Based Integration and Optimization 3.1 Integration 3.2 Optimization 4 Relation with the Momentum Method 5 Conclusions and Future Work References Fast Solver for Advection Dominated Diffusion Using Residual Minimization and Neural Networks 1 Introduction 2 Methodology 2.1 Galerkin Method 2.2 Petrov-Galerkin Method 2.3 Advection-Diffusion Problem with Arbitrary Coefficients 2.4 Theoretical Uh Vh Space Implications and Limitations 2.5 Residual Minimization - Optimal Test Functions for Given 3 Numerical Results 3.1 Efficient Numerical Solution Using Artificial Neural Net and Petrov-Galerkin Method 3.2 Dealing with Global Optimal Test Functions 4 Conclusions References Long-Term Prediction of Cloud Resource Usage in High-Performance Computing 1 Introduction 2 Related Work 3 Long-Term Cloud Resource Usage Prediction System 4 Evaluation 5 Conclusions References Least-Squares Space-Time Formulation for Advection-Diffusion Problem with Efficient Adaptive Solver Based on Matrix Compression 1 Introduction 2 Model Problem 3 Space-Time Formulation 3.1 First-Order Formulation 3.2 Variational Formulation 3.3 Discrete Problem 4 Matrix Compression 5 Compressed Matrix-Vector Multiplication 6 GMRES Solver 7 Numerical Results 8 Conclusions References Towards Understanding of Deep Reinforcement Learning Agents Used in Cloud Resource Management 1 Introduction 2 Related Work 2.1 DRL in Cloud Resource Management 2.2 Explainable AI in Deep Reinforcement Learning 3 Environment Setup 4 Understanding of DRL Agents Used in Cloud Resource Management 4.1 Input Metric Attribution 4.2 Debugging the Training Process 4.3 Policy Summarization 4.4 Evolution of Policies During Training 4.5 Removing Irrelevant Features 5 Conclusions References ML-Based Proactive Control of Industrial Processes*-1.3pc 1 Introduction 1.1 Paper Contribution 1.2 Paper Outline 2 Related Works and Motivation 2.1 Motivation 3 Methodology 4 Case Study: Gas Production from Underground Reservoir 4.1 Problem Definition 4.2 Methodology Adjustment for the Well Control 4.3 Proposed Solution Application 4.4 Results 5 Discussion and Potential Applications 6 Conclusion References Parallel Algorithm for Concurrent Integration of Three-Dimensional B-Spline Functions*-1pc 1 Introduction 2 Integration Algorithm 2.1 Formulation of the Model Problem 2.2 Algorithms and Computational Cost 2.3 Concurrency Model for Integration 2.4 Results 3 Conclusions References Biomedical and Bioinformatics Challenges for Computer Science Resting State Brain Connectivity Analysis from EEG and FNIRS Signals 1 Introduction 2 Materials and Methods 2.1 EEG Data Pre-processing 2.2 fNIRS Data Pre-processing 2.3 Signals Reconstruction 2.4 Connectivity Differences in Brain Networks 3 Results 4 Discussion References Anomaly Detection of Motion Capture Data Based on the Autoencoder Approach 1 Introduction 2 Related Work 3 Method 4 Dataset 5 Results 6 Summary and Conclusions References Influence of the Capillaries Bed in Hyperthermia for Cancer Treatment 1 Introduction 2 Methods 2.1 Mathematical Model 2.2 Numerical Scheme 2.3 Uncertainty Quantification 3 Numerical Results 3.1 Influence of the Capillaries Architecture 3.2 Influence of the Blood Velocity 4 Discussion 5 Conclusions and Future Works References Phase Correction and Noise-to-Noise Denoising of Diffusion Magnetic Resonance Images Using Neural Networks 1 Introduction 2 Materials and Methods 2.1 Modelling Synthetic Training Data for the Phase Shifter 2.2 Phase Correction 2.3 Denoising 2.4 Evaluation Methods 3 Results 3.1 Phase Shifter Training and Phase Correction in dMR Images 3.2 Averaging Phase-Corrected dMR Images 3.3 N2N Denoiser Training and Denoising of Brain dMR Images 4 Discussion References CNN-Based Quantification of Blood Vessels Lumen in 3D Images 1 Introduction 2 Methods and Materials 3 Results 4 Summary and Conclusion References Tensor Train Subspace Analysis for Classification of Hand Gestures with Surface EMG Signals*-1pc 1 Introduction 2 Related Works 3 Methods 3.1 Tensor Train Model 3.2 Proposed Method 4 Results and Discussion 5 Conclusions References A New Statistical Approach to Image Reconstruction with Rebinning for the X-Ray CT Scanners with Flying Focal Spot Tube*-1pc 1 Introduction 2 Flying Focus Spot Technique 3 Reconstruction Algorithm 3.1 Rebinning Operation 4 Results 5 Conclusion References Investigating the Sentiment in Italian Long-COVID Narrations 1 Introduction 2 Background on Sentiment Analysis of COVID-19 Texts 3 Materials and Methods 3.1 Long-COVID PASC Dataset 3.2 Sentiment Analysis Using VADER 3.3 Topic Modeling Using LDA 4 Results and Discussion 4.1 Exploratory Data Analysis 4.2 Polarity Analysis 4.3 Topic Modeling Analysis 5 Conclusions and Future Work References Toward the Human Nanoscale Connectome: Neuronal Morphology Format, Modeling, and Storage Requirement Estimation 1 Introduction 2 Neuron Morphology and Types 3 Neuronal Morphologic Parameters and Nanoscale Data Format 4 Neuronal Morphology Geometric Models 5 Storage Requirements for Volumetric and Geometric Neuronal Morphology Models 5.1 Volumetric Neuronal Models 5.2 Geometric Neuronal Models 6 Discussion References Replacing the FitzHugh-Nagumo Electrophysiology Model by Physics-Informed Neural Networks*-1pc 1 Introduction 2 Background 3 Methods 3.1 FitzHugh-Nagumo Model 3.2 Neural Network Architecture 3.3 Advanced Techniques 3.4 Validation 4 Results 4.1 Basic Scenario with Time as the Single Parameter 4.2 PINN Parameterized by Time and the Initial Condition for U 4.3 PINNs for Any Initial Conditions of the FHN Equations (U0, W0) and Time 4.4 PINNs Replace the FHN Model Parameterized by Any Initial Conditions, the Parameter K, and Time 5 Discussion 6 Conclusions References Sensitivity Analysis of a Two-Compartmental Differential Equation Mathematical Model of MS Using Parallel Programming*-1pc 1 Introduction 2 Methods 2.1 Mathematical Model 2.2 Numerical Implementation 2.3 Sensitivity Analysis 2.4 Parallel Implementation 3 Results and Discussion 3.1 Computational Environment 3.2 Results for the Parallel Execution 3.3 Sensitivity Analysis 4 Conclusions References Hierarchical Relative Expression Analysis in Multi-omics Data Classification*-1pc 1 Introduction 2 Relative Multi-test Classification Tree 2.1 Overview 2.2 Constituting the Multi-test 3 Experiments 3.1 Datasets and Setup 3.2 Results 4 Conclusions References Author Index