دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Emanuele Trucco (editor), Tom MacGillivray (editor), Yanwu Xu (editor) سری: ISBN (شابک) : 0081028164, 9780081028162 ناشر: Academic Press سال نشر: 2019 تعداد صفحات: 483 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 55 مگابایت
در صورت تبدیل فایل کتاب Computational Retinal Image Analysis: Tools, Applications and Perspectives به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل تصویر شبکیه محاسباتی: ابزارها ، برنامه ها و چشم اندازها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تجزیه و تحلیل تصویر محاسباتی شبکیه چشم: ابزارها، کاربردها و چشم اندازها یک نمای کلی از تحلیل تصویر شبکیه (RIA) معاصر در زمینه انفورماتیک مراقبت های بهداشتی و هوش مصنوعی ارائه می دهد. به طور خاص، تاریخچه ای از این زمینه، انگیزه بالینی برای RIA، مبانی فنی (روش های اکتساب تصویر، ابزارها)، تکنیک های محاسباتی برای عملیات ضروری، تشخیص ضایعه (مانند دیسک بینایی در گلوکوم، میکروآنوریسم در دیابت) و اعتبار، و همچنین ارائه می دهد. به عنوان بینشی در مورد تحقیقات فعلی که برگرفته از هوش مصنوعی و کلان داده است. این مرجع جامع برای محققان و دانشجویان فارغ التحصیل در تجزیه و تحلیل تصویر شبکیه، چشم پزشکی محاسباتی، هوش مصنوعی، مهندسی زیست پزشکی، انفورماتیک سلامت و موارد دیگر ایده آل است.
Computational Retinal Image Analysis: Tools, Applications and Perspectives gives an overview of contemporary retinal image analysis (RIA) in the context of healthcare informatics and artificial intelligence. Specifically, it provides a history of the field, the clinical motivation for RIA, technical foundations (image acquisition modalities, instruments), computational techniques for essential operations, lesion detection (e.g. optic disc in glaucoma, microaneurysms in diabetes) and validation, as well as insights into current investigations drawing from artificial intelligence and big data. This comprehensive reference is ideal for researchers and graduate students in retinal image analysis, computational ophthalmology, artificial intelligence, biomedical engineering, health informatics, and more.
Front matter Copyright Contributors A brief introduction and a glimpse into the past Why this book? Casting an eye into the distant past: The history of eye research in the West Book structure Acknowledgments References Clinical motivation and the needs for RIA in healthcare Introduction Assisting diagnosis of clinical eye diseases Assessing severity and classifying clinical eye diseases Capturing pre-clinical signs of the eye diseases Identifying retinal changes associated with systemic diseases Structural signs to functional signs Perspectives—Precise diagnosis, replacing repetitive work, and exploring novel signs References The physics, instruments and modalities of retinal imaging Introduction Optics of the eye Using the eye to record images of the retina Spatial resolution of retinal images Glare, contrast and image quality How the physics of light propagation affects retinal image quality Spectral characteristics of the eye The use of eye phantoms to simulate retinal imaging Ophthalmic instruments Brief history Safety exposure limits The fundus camera Indirect ophthalmoscopes The scanning laser ophthalmoscopes Handheld retinal cameras Ultrawide field imaging Optical coherence tomography Time domain optical coherence tomography. The beauty of the en-face view Spectral domain optical coherence tomography Camera based optical coherence tomography and exceptional spatial resolutions Swept source optical coherence tomography. Going faster and deeper into the tissue Methods of generating images in SD-OCT Modern topics in optical coherence tomography for eye imaging Polarization and birefringence Conclusions References Retinal image preprocessing, enhancement, and registration Introduction Intensity normalization Fundus imaging Tomographic imaging Noise reduction and contrast enhancement Fundus imaging Tomographic imaging Retinal image registration Fundus imaging Tomographic imaging Intramodal vs. cross-modal image registration Conclusions Acknowledgment References Automatic landmark detection in fundus photography Background Optic disc Macula lutea Fovea and disc detection/segmentation—Utility Retinal imaging databases Algorithm accuracy Optic disc and fovea detection Automated localization of the optic disc, fovea, and retinal blood vessels from digital color fundus images (Sinthana ... Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels (Hoover and Goldbaum, 2 ... Detection of optic disc in retinal images by means of a geometrical model of vessel structure (Foracchia et al., 2004 ... Fast localization and segmentation of the optic disc in retinal images using directional matched filtering and level ... Multiscale sequential convolutional neural networks for simultaneous detection of the fovea and optic disc (Al-Bander ... Summary References Retinal vascular analysis: Segmentation, tracing, and beyond Introduction Benchmark datasets and evaluation metrics Datasets Evaluation metrics Vessel segmentation Unsupervised segmentation Supervised segmentation Deep learning Vessel tracing Vascular junction identification Vascular tree separation Arterial/venous vessel classification Clinical relevant vessel readouts Summary and outlook Vasculature analysis in emerging imaging techniques Benchmarks and metrics References OCT layer segmentation Anatomical description and clinical relevance Algorithmic evaluation and benchmarking Intensity based methods Graph based methods Deep learning based methods Preprocessing and augmentation Pixelwise semantic segmentation methods Boundary detection methods Discussion and conclusion References Image quality assessment Introduction Image quality of ophthalmic images Applications of image quality assessment algorithms Screening for diabetic retinopathy Teleophthalmology and clinical decision making Epidemiology study requirements Automated image quality assessment algorithms An overview of techniques Datasets and metrics used to evaluate image quality Examples of retinal image quality assessment systems Algorithms based on generic image quality parameters Information fusion Algorithms based on structural image quality parameters Image structure clustering Segmentation map feature analysis Algorithms based on deep learning Convolutional neural networks Human visual system information combined with convolutional neural networks Conclusion References Validation Introduction: Why is validation difficult? Challenges Annotations are expensive Annotation tasks are often unfamiliar to clinicians Consistency is hard to achieve Collecting annotations may be limited by data governance Image quality may vary across images and data sets Absence of unambiguous ground truth Time-varying quantities are not well represented by a single measurement Test criteria and data sets are not uniform in the literature Dependency on application/task Human in the loop Tools and techniques Choosing images: Aligning data set with clinical criteria Technical criteria Clinical criteria Direct techniques: Focus on the image processing task Receiver operating characteristic (ROC) curves Accuracy and related measures Confusion matrices Bland-Altman graphs Cohen’s kappa and related measures Error histograms Eliminating outliers Choosing an appropriate number of bins Validation on outcome: Focus on the clinical task Annotations and data, annotations as data Annotation protocols and their importance Reducing the need for manual annotations Conclusion Acknowledgments References Statistical analysis and design in ophthalmology: Toward optimizing your data Introduction Data analysis in ophthalmic and vision research The contribution of statistics in ophthalmic and vision research Data classification, data capture and data management Data classification Data collection and management Words of caution about data collection in the current era of big data Uncertainty and estimation Uncertainty The problem of estimation, P -values and confidence intervals Words of caution on statistical and clinical significance and multiple tests On choosing the right statistical analysis method The most common statistical methods How to decide what method to use? Words of caution in the data analysis method selection Missingness of data Main mechanisms of data missingness Main strategies to tackle missing data Words of caution for dealing with missing data Designing an ophthalmic study Study designs, sample size calculation and power analysis Words of caution for two eyes: What to do and what not to do? Biomarkers Ophthalmic imaging data challenges on intersection of statistics and machine learning Discussion References Structure-preserving guided retinal image filtering for optic disc analysis Introduction Optic disc segmentation Optic cup segmentation Joint optic disc and optic cup segmentation Image quality Contributions Structure-preserving guided retinal image filtering Experimental results Dataset Evaluation metrics Results Application Deep learning-based optic cup segmentation Sparse learning-based CDR computation Performance on regions with lesions Conclusions References Diabetic retinopathy and maculopathy lesions Introduction The clinical impact of DR and maculopathy lesions Type of lesions/clinical features Lesion detection and segmentation Morphology Machine learning Region growing Thresholding Deep learning Miscellaneous Performance comparison Lesion localization Conclusions References Drusen and macular degeneration Introduction Histopathological lesions and clinical classification Normal aging of the macula Lesions of non-neovascular AMD Lesions of neovascular AMD Automatic analysis of drusen and AMD-related pathologies Drusen detection in retinal fundus photography Characterization, classification and quantification of drusen Machine learning based approaches Drusen segmentation and measurement Quantifying drusen area and distinguishing drusen type Texture-based methods Other imaging modalities Angiography Scanning laser ophthalmoscopy Drusen detection in OCT Analysis of other AMD lesions Diagnosis of AMD Datasets Conclusions References OCT fluid detection and quantification Introduction Intraretinal cystoid fluid Subretinal fluid Sub-RPE fluid in PED OCT fluid quantification Segmentation using supervised learning Preprocessing and postprocessing Denoising Retina and layer segmentation Data augmentation Traditional machine-learning and nonmachine-learning approaches Segmentation using weakly supervised and unsupervised learning Evaluation OCT fluid detection Detection using image segmentation Detection using image classification Traditional machine-learning approaches Evaluation Clinical applications Structure function Longitudinal analysis of VA outcomes Method Obtaining fluid volumes Regression model Experiments and results Dataset Regression model Discussion and conclusions Acknowledgments References Retinal biomarkers and cardiovascular disease: A clinical perspective Introduction The concept of retinal vascular imaging Retinal vascular changes and heart disease Retinal vascular changes and stroke Clinical stroke Subclinical stroke Retinal vascular changes and CVD mortality Clinical implications Retinal vascular imaging as a tool to stratify CVD Retinal imaging for clinical trials and outcome monitoring for CVD New advances in retinal vascular imaging Retinal imaging with artificial intelligence Imaging of the choroidal vasculature Imaging of the retinal capillary network Ultra-widefield retinal imaging Conclusions References Vascular biomarkers for diabetes and diabetic retinopathy screening Introduction The Sino-Dutch collaboration project RetinaCheck Vascular analysis-specific biomarkers for early detection and screening Layout of this chapter Brain- and vision-inspired computing The mathematics of V1: Sub-Riemannian geometry in SE (2) Orientation scores A moving frame of reference Sub-Riemannian geometry Application: Brain inspired image analysis Preprocessing Denoising in the SE (2) space Vessel segmentation Vessel completion Validation studies Vascular biomarkers Vessel width Vessel tortuosity Single-vessel tortuosity Global tortuosity SE (2) tortuosity Exponential curves in SE(2) Fitting the best exponential curve in the orientation scores Global tortuosity measurement via the exponential curvature Bifurcations Murray’s law Bifurcation biomarkers Fractal dimension The processing pipeline RHINO software and graphical user interface Clinical validation studies The Shengjing study The Maastricht study Discussion References Image analysis tools for assessment of atrophic macular diseases The clinical need for automatic image analysis tools in retinal disease Overview of analysis tools of atrophic AMD and risk factors for progression to atrophy Semiautomated segmentation of atrophic macular diseases Heidelberg RegionFinder for atrophic AMD segmentation in FAF images Level set approach for atrophic AMD segmentation in OCT and FAF images Automated segmentation of atrophic macular diseases Supervised classification for atrophic AMD segmentation in FAF images using a traditional machine learning algorithm Supervised classification for age-related and juvenile atrophic macular degeneration using an AI deep learning approa ... Automated binary classification of OCT risk factors for progression from intermediate AMD to atrophy using an AI deep l ... Summary Acknowledgments References Artificial intelligence and deep learning in retinal image analysis Introduction Fundamentals of deep learning Fundamentals of neural networks Deep convolutional neural networks CNNs for semantic image segmentation Deep learning applications to retinal disease analysis Deep learning for diabetic retinopathy Deep learning for age-related macular degeneration Deep learning for retinopathy of prematurity and glaucoma Deep learning applications in OCT segmentation Deep learning for retinal biomarker extraction Automatic retinal biomarker discovery Datasets Conclusion References AI and retinal image analysis at Baidu Baidu: Mission, products, and next-steps The Baidu mission AI in Baidu Baidu Brain Visual semantic AI Speech semantic AI Natural language AI General architecture of AI retinal image analysis Descriptive IQA Focus and clarity assessment Brightness and contrast assessment Illumination evenness assessment Disease-specific IQA Discussion Diabetic retinopathy detection algorithm Preprocessing Data augmentation Classification model Glaucoma detection algorithm Age-related macular degeneration detection (AMD) algorithm Macular AOI location End-to-end referable AMD classifier Drusen and neovascularization detector Interpretation module Experimental results and real-world application Image quality assessment Diabetic retinopathy Glaucoma Age-related macular degeneration Real-world application Outlook of Baidu retina system Acknowledgments References The challenges of assembling, maintaining and making available large data sets of clinical data for research Introduction Sources of images and associated data Research collected images Routinely collected images Sources of ground truth data Linking clinical data to imaging data Data governance Key data protection terminology and concepts Applications to access data for research Controls Safe data Identifying information Acceptance threshold for re-identification Transformation of data Considerations when anonymizing pixel data Software to anonymize DICOM images Safe people and organizations Indexing and linking Trusted third parties Who will be accessing the research data Safe access Transferring data Data hosted on a researcher managed environment Safe Havens/trusted research environments Federated or distributed analysis Challenges of assembling large quantities of clinical data within data governance controls Conclusions References Technical and clinical challenges of A.I. in retinal image analysis Introduction Progression of A.I. in retinal imaging Technical challenges Quantity of data Quality of data Heterogeneous data Unbalanced data Incomplete data Private data Model generalizability Model interpretability Model maintainability Model deployability Clinical challenges Variation in DR classification systems and reference standards Disagreement in clinical ground truth Integration into clinical workflows Privacy and data collection Assignment of liability Patient and physician acceptance of “black box” models Expectation management Conclusion References Index A B C D E F G H I J K L M N O P Q R S T U V W Y Z