ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Computational Nanoscience

دانلود کتاب محاسبات نانوساختار

Computational Nanoscience

مشخصات کتاب

Computational Nanoscience

ویرایش:  
 
سری: RSC theoretical and computational chemistry series, no. 4 
ISBN (شابک) : 9781849731331, 1849731330 
ناشر: Royal Society of Chemistry 
سال نشر: 2011 
تعداد صفحات: 445 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 108 مگابایت 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Computational Nanoscience به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب محاسبات نانوساختار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب محاسبات نانوساختار

حاشیه نویسی چکیده: حاشیه نویسی


توضیحاتی درمورد کتاب به خارجی

Annotation Abstract: Annotation



فهرست مطالب

Contents......Page 8
1.1 Introduction......Page 16
1.2 The Electronic Structure Problem......Page 17
1.3 Algorithms for Solving the Kohn–Sham Equation......Page 18
1.4.1 The Electronic Properties of Si Nanocrystals......Page 23
1.4.2 The Vibrational Modes for Si Nanocrystals......Page 25
1.4.3 Properties of Phosphorus-Doped Si Nanocrystals......Page 27
1.4.4 Hyperfine Splitting in Lithium-Doped ZnO Nanocrystals......Page 30
1.4.5 Evolution of Magnetism in Iron Clusters......Page 33
1.5 Conclusions......Page 37
References......Page 38
2.1 Introduction......Page 41
2.2 General Aspects of Computational Procedure......Page 43
2.3.1 Small Gold Clusters Doped by Carbon......Page 44
2.3.2 Small Alumo-Carbon Clusters......Page 52
2.3.3 Larger Auro-Carbon Nanosystems......Page 56
2.3.4 A Gold Cage Structured by a Hydrocarbon Molecular ‘‘Dopant’’......Page 61
2.3.5 Hydrogen Trapping in Metal Cluster Nanocages......Page 64
2.4 Conclusions......Page 68
References......Page 70
3.1 Introduction......Page 73
3.2 Potential Energy Surfaces......Page 74
3.3 Geometry Optimisation of Rigid Bodies......Page 77
3.4.1 Nanoscale Chirality......Page 81
3.4.2 Self-Assembly of Capsid-Like Shells......Page 86
3.5 Conclusion......Page 91
A. Paramonov–Yaliraki Potential......Page 92
B. Modified Gay–Berne Potential......Page 93
References......Page 94
4.1 Introduction......Page 97
4.2 Molecular Simulation for Confined Fluids......Page 9
4.3 Vapour–Liquid Transition under Confinement......Page 99
4.3.1 Grand Canonical Monte Carlo......Page 100
4.3.2 Crossover from 3D-Like to 2D-Like under Confinement......Page 102
4.4 Fluid–Solid Transition under Confinement......Page 104
4.4.1 Simulation of Confinement-Induced Fluid–Solid Phase Transitions......Page 107
Acknowledgements......Page 120
References......Page 121
5.1 Introduction......Page 124
5.2.1 Increasing Thermal Conductivity......Page 125
5.2.3 Characterisation......Page 127
5.2.4 Nanoscale Phenomena......Page 128
5.2.6 Far-from-Equilibrium Behaviour......Page 129
5.3 Survey of Simulation Methods......Page 130
5.3.1 Direct Computation of k......Page 131
5.3.2 Computing k by Direct Simulation......Page 132
5.3.3 Gaining Insight from Simulations......Page 135
5.4 Example: Heat Flow in a Nanoscale Material; Intrinsic Dissipation in CNT Resonators......Page 140
5.4.1 Mpemba-Like Behaviour......Page 145
5.4.2 Gateway Modes......Page 150
5.5 Example: Heat Flow Between Nanoscale Materials; Exploiting Frequency-Selective Thermal Transport for Chemical Sensing......Page 152
References......Page 158
6.1 Introduction......Page 162
6.2 Classical Mie Theory and the Inclusion of Dipole Reradiation in SERS......Page 163
6.2.1 Vector Spherical Harmonics......Page 164
6.2.2 Plane-Polarised Electric-Field Expansionin Vector Spherical Harmonics......Page 166
6.2.3 Dipole Electric-Field Expansion in Vector Spherical Harmonics......Page 168
6.2.4 Electromagnetic Mechanism of Surface-Enhanced Raman Scattering......Page 169
6.2.5 Results: Isolated Sphere Dipole Reradiation (DR) Effects......Page 170
6.3 FDTD: Finite-Difference Time-Domain Method......Page 173
6.4 FDTD: Inclusion of Nonlocal Effects in the Finite-Difference Time-Domain Method......Page 175
6.4.1 Theoretical Approach......Page 176
6.4.2 Optical Responses of Au Nanowires in the Local and Nonlocal Limits......Page 178
6.5 DDA: The Discrete Dipole Approximation Method......Page 181
6.5.1 Mathematical Formalism of DDA......Page 182
6.5.2 Optical Response of Au Cube: Comparing DDA and FDTD Convergence......Page 185
6.6 Modelling LSPR of Metal Nanoparticles Coated with Resonant Molecules......Page 186
6.6.2 Results: Pyridine Interacting with an Ag Spheroidal Particle......Page 187
6.7 Conclusion......Page 188
References......Page 191
7.1 Introduction......Page 194
7.2 Foundation of Electron Transport Theory......Page 196
7.3.1 Theoretical Foundation and Simple Model......Page 199
7.3.2 The NEGF Method: Basic Algorithm and Numerical Considerations......Page 201
7.3.3 Inelastic Effects......Page 204
7.3.4 Large-Scale Simulations: Tackling the 100k Challenge......Page 207
7.3.5 When Kohn–Sham DFT Goes Wrong......Page 214
7.4.1 TMR Junctions: Large k-Point Sampling and Bound States......Page 218
7.4.2 Large Macromolecules: Mn12 and Negative Differential Resistance......Page 224
7.4.3 Environmental Effects......Page 228
7.5 Conclusion and Outlook......Page 233
References......Page 235
8.1 Introduction......Page 240
8.2.1 Structural Concepts of Nanotubes......Page 242
8.2.2 Density Functional Theory Based Approach......Page 247
8.2.3 Clar’s Co......Page 249
8.2.4 Classical Force-Field Based Approach......Page 256
8.3.1 Functionalisation of Carbon Nanotubes......Page 260
8.3.2 Encapsulation of Carbon Nanotubes......Page 274
8.3.3 Encapsulation of Inorganic Nanotubes......Page 284
References......Page 289
9.1 Introduction......Page 294
9.2 Methodology......Page 296
9.3 13C NMR Chemical Shifts of Finite Single-Walled Carbon Nanotubes......Page 299
9.4 13C NMR Chemical Shifts of Infinite Single-Walled Carbon Nanotubes......Page 302
9.6 Aromaticity, and NICS of SWNTs and DWNTs......Page 305
9.7 13C and 1H NMR of Single-Walled Nanotubes Functionalised by Amine Groups......Page 306
9.8 13C NMR of Fluorinated Single-Walled Nanotubes......Page 310
9.9 13C NMR Chemical Shifts of Single-Walled Nanotubes with Stone–Wales Defects......Page 312
9.10 Shielding Tensors......Page 313
9.11 Summary and Outlook......Page 315
References......Page 317
10.1 Introduction......Page 322
10.2 Modelling Methodologies......Page 325
10.2.1 Background......Page 326
10.2.2 Potential Models......Page 327
10.3.2 Results......Page 329
10.4.1 Hexagonal Net Sheets......Page 335
10.4.2 Square Net Sheets......Page 336
10.5 The Energy Landscape Filter......Page 339
References......Page 345
11.1 Introduction......Page 349
11.2.1 Transmission Electron Microscopy (TEM) and Defects Created by the Electron Beam......Page 352
11.2.2 Defects Produced by Ion Irradiation......Page 354
11.2.3 Experimental Identification of Irradiation-Induced Defects......Page 356
11.3 Computational Methods......Page 359
11.3.2 Tight Binding (TB)......Page 360
11.3.4 Time-Dependent DFT (TD-DFT)......Page 361
11.4 Theoretical Analysis of Defects in Graphene......Page 362
11.4.1 Point Defects......Page 363
11.4.2 One Dimensional Defects: Dislocations and Grain Boundaries......Page 368
11.5 Irradiation-Induced Defects......Page 370
11.5.1 Electron Beam-Driven Morphological Changes......Page 377
11.6 Conclusions and Outlook......Page 382
References......Page 383
12.1 Introduction and Background......Page 392
12.2 Using Density Functional Theory to Calculate the Properties of Graphite......Page 396
12.3 Bonding and Elastic Parameters......Page 398
12.4.1 Lattice Vacancies in Graphite......Page 400
12.4.2 Self-Interstitial Atoms in Graphite......Page 405
12.4.3 Frenkel Defects in Graphite......Page 409
12.5 Line Defects......Page 410
12.5.1 Dislocations and Disclinations......Page 413
12.5.2 Prismatic Edge Dislocations......Page 416
12.5.3 Basal Dislocations......Page 419
12.5.4 Buckle, Ruck, and Tuck......Page 421
Acknowledgements......Page 424
References......Page 425
Subject Index......Page 429




نظرات کاربران