دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Michael O. Dada, Bamidele O. Awojoyogbe سری: ISBN (شابک) : 9783030767273, 9783030767280 ناشر: Springer سال نشر: 2021 تعداد صفحات: 412 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 Mb
در صورت تبدیل فایل کتاب Computational Molecular Magnetic Resonance Imaging for Neuro-oncology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تصویربرداری رزونانس مغناطیسی مولکولی محاسباتی برای نوروآنکولوژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بر اساس روشهای تحلیلی و برنامههای رایانهای ارائهشده در این کتاب، تنها چیزی که ممکن است برای انجام تشخیص بافت MRI مورد نیاز باشد، در دسترس بودن دادههای آرامسنجی و مهارت برنامههای رایانهای ساده است. استفاده از این برنامه ها آسان، تعاملی بالاست و پردازش داده ها سریع و بدون ابهام است. آزمایشگاه ها (با یا بدون امکانات پیچیده) می توانند تشخیص تشدید مغناطیسی محاسباتی را تنها با داده های آرامش T1 و T2 انجام دهند. نتایج، انگیزه استفاده از دادهها را برای تولید پیشبینیهای مبتنی بر دادههای مورد نیاز برای یادگیری ماشین، هوش مصنوعی (AI) و یادگیری عمیق برای تحقیقات چند رشتهای و بینرشتهای فراهم کرده است. در نتیجه، این کتاب برای دانشجویان، دانشمندان، مهندسان، پرسنل پزشکی و محققانی که علاقه مند به توسعه مفاهیم جدید برای درک عمیق تر تصویربرداری تشدید مغناطیسی محاسباتی برای تشخیص پزشکی، پیش آگهی، درمان و مدیریت بیماری های بافتی هستند، بسیار مفید است.
Based on the analytical methods and the computer programs presented in this book, all that may be needed to perform MRI tissue diagnosis is the availability of relaxometric data and simple computer program proficiency. These programs are easy to use, highly interactive and the data processing is fast and unambiguous. Laboratories (with or without sophisticated facilities) can perform computational magnetic resonance diagnosis with only T1 and T2 relaxation data. The results have motivated the use of data to produce data-driven predictions required for machine learning, artificial intelligence (AI) and deep learning for multidisciplinary and interdisciplinary research. Consequently, this book is intended to be very useful for students, scientists, engineers, the medical personnel and researchers who are interested in developing new concepts for deeper appreciation of computational magnetic resonance imaging for medical diagnosis, prognosis, therapy and management of tissue diseases.
Cover Mini Title Computational MolecularMagnetic Resonance Imagingfor Neuro-oncology Copyright Preface Acknowledgments Contents List of Figures List of Tables Book Review Chapter 1: General Introduction 1.1 Molecular or Cellular Processes Associated with Disease Conditions 1.2 Molecular Imaging 1.3 Importance of Molecular Imaging in Human Medicine 1.4 Molecular Imaging Techniques 1.5 Significance of MRI Techniques Chapter 2: Fundamental Physics of Nuclear Magnetic Resonance 2.1 Overview of Magnetic Resonance Imaging 2.1.1 Principles of Magnetic Resonance Imaging 2.1.2 Physics of Magnetic Resonance Imaging 2.1.3 Magnetic Resonance Imaging Equipment 2.1.3.1 The Magnet 2.1.3.2 Gradients 2.1.3.3 RF System 2.1.4 Image Acquisition and Computation 2.1.5 Image Contrast 2.1.6 Applications of MR Imaging 2.1.6.1 Physiological MR Imaging 2.1.6.2 Magnetic Resonance Angiography (MRA) 2.1.6.3 Functional Imaging 2.1.6.4 Spectroscopic Imaging 2.1.6.5 Diffusion Imaging 2.2 MR Contrast Agents and Their Physicochemical Basis 2.2.1 Methods of Generating Contrast in MR Agents 2.2.2 Atomic Basis of Magnetic Resonance 2.2.3 Relaxivity and T1, T2, T2* Contrast Agents 2.2.4 Chemistry of T1 Agents 2.2.5 T2 Agents 2.2.6 Functionalization of MR Contrast Agents 2.3 Principles of Optics in Magnetic Resonance 2.3.1 Bloch Equations in Optics 2.4 Computational Science 2.4.1 Computational Science and Problem Solving 2.4.2 Advantages of Computational Model 2.5 Compressed Sensing MRI and Computational Science 2.6 MRI in Molecular Imaging 2.7 Theoretical Treatment of Magnetic Resonance 2.7.1 Theoretical Background of Magnetic Resonance 2.7.1.1 Paramagnetism and Curie´s Law 2.7.1.2 Magnetic Susceptibility 2.7.1.3 Larmor Precession Spin Equation of Motion Spin Precession 2.7.1.4 NMR Relaxation Equilibrium States The Relaxation Process 2.7.1.5 Spin Interactions 2.7.1.6 Spin-Lattice and Spin-Spin Relaxation 2.7.2 The Bloch Equations 2.7.2.1 The Rotating Frame of Reference 2.7.2.2 The Equivalence Principle 2.7.2.3 Transformation to the Rotating Frame 2.7.2.4 Equation of Motion in the Fictitious Field 2.7.2.5 Rotating Field and Oscillating Field Rotating and Counter-Rotating Components The Effective Magnetic Field Resonant Transverse Field 2.7.2.6 Excitation Pulses 2.7.2.7 Harmonic Oscillator Model of NMR and Dynamic Magnetic Susceptibility Time Response of Damped Oscillator Frequency Response of Damped Oscillator Linearity and Superposition Fourier Duality Complex Susceptibility Dynamic Magnetic Susceptibility 2.7.2.8 The Transverse Relaxation Function Response to Linearly Polarized Magnetic Field 2.7.2.9 Linearity and Saturation Conditions for Linearity Saturation Non-Adiabatic Condition Adiabatic Condition 2.7.3 Quantum and Classical Descriptions of Spin Motion 2.7.3.1 Quantum and Classical Treatment 2.7.3.2 The Heisenberg Equation 2.7.3.3 Equation of Motion for Magnetic Moment Operator 2.7.3.4 Evaluation of Commutators 2.7.3.5 Computation of Expectation Values 2.7.4 Quantum Treatment of NMR Relaxation 2.7.4.1 Relaxation, Resonance and Equilibrium State 2.7.4.2 Expectation Values of Quantum Operators 2.7.4.3 Systems in Equilibrium 2.7.4.4 Curie´s Law for Systems with Interactions 2.7.4.5 Behaviour of Magnetization in Pulsed NMR The Hamiltonian and Approximations Quantum Responses Due to 90 and 180 Pulses Relaxation of Longitudinal and Transverse Magnetization 2.7.4.6 Quantum Mechanical Description of Spin in a Static Field Bo Equation of Motion for the System 2.7.4.7 Quantum Mechanical Description of Spin in a Rotating Magnetic Field 2.7.4.8 Quantum Mechanical Pictures for Description of Physical Systems The Heisenberg Picture The Schrödinger Picture The Interaction (Dirac) Picture 2.7.5 Modelling and Differential Equations in Computational MRI 2.7.6 Formulation of the Bloch Equations for Treatment of Fluids in Motion 2.7.6.1 Kinematic of Fluids in Motion 2.7.6.2 The Bloch NMR Flow Equations 2.7.6.3 NMR Flow at Constant Fluid Velocity The General Bloch NMR Flow Equation for Constant Fluid Velocity Time-Independent Bloch NMR Flow Equation for Constant Fluid Velocity Time-Dependent Bloch NMR Flow Equation for Constant Fluid Velocity 2.7.7 Diffusion Process in Magnetic Resonance 2.7.7.1 Multidimensional Diffusion with Constant Diffusion Coefficient 2.7.7.2 Multidimensional Diffusion with Variable Diffusion Coefficient 2.7.8 Advection-Diffusion in Nuclear Magnetic Resonance 2.7.8.1 One-Dimensional Diffusion-Advection with Constant Diffusion Coefficient 2.7.8.2 Multidimensional Diffusion-Advection with Constant Diffusion Coefficient 2.7.8.3 Multidimensional Diffusion-Advection with Variable Diffusion Coefficient 2.7.9 Justification for Assumption of the Nature of Transverse Magnetization 2.7.10 Variable Fluid Flow Corrections to the Bloch NMR Flow Equation 2.7.10.1 NMR Flow with Variable Fluid Velocity The General Bloch NMR Flow Equation for Variable Fluid Velocity The Time-Independent Bloch NMR Flow Equation for Variable Fluid Velocity 2.7.10.2 Derivation of Diffusion Equation with Variable Diffusion Coefficient 2.7.10.3 One-Dimensional Diffusion-Advection with Variable Diffusion Coefficient 2.7.10.4 Multidimensional Diffusion and Diffusion-Advection with Variable Diffusion Coefficient Chapter 3: Radiofrequency Identification System for Computational Diffusion Magnetic Resonance Imaging Based on Bloch´s NMR Fl... 3.1 Introduction 3.2 Mathematical Analysis 3.3 Development of Non-gradient MRI 3.4 A New Method for Diffusion MRI 3.5 Computational Analysis 3.6 Discussion 3.7 Conclusion Chapter 4: Radio-Frequency Identification System for Computational Magnetic Resonance Imaging of Blood Flow at Suction Points 4.1 Introduction to Blood Flow and MRI 4.2 Analytical Method 4.3 Analysis of Blood Flow at Suction Points 4.4 Computational Analysis of Blood Flow at Suction Points 4.5 RF ID and Velocity Data Generation for Different Tissues 4.6 Conclusion Chapter 5: A Computational MRI Based on Bloch´s NMR Flow Equation, MRI Fingerprinting and Python Deep Learning for Classifying... 5.1 Introduction 5.2 Computational Modelling of the Bloch NMR Flow Equation 5.3 Relaxometry Data 5.4 Computation of Magnetic Resonance Signal Dataset 5.5 Data Visualization 5.6 Linear Regression 5.7 Machine Learning 5.7.1 Logistic Regression 5.7.2 Support Vector Machine 5.7.3 Naive Bayes 5.7.4 Decision Tree 5.7.5 Random Forest 5.7.6 Extra Trees 5.7.7 K Nearest Neighbors 5.7.8 XGBoost 5.8 Shallow Deep Learning 5.9 Deep Neural Network 5.10 Discussions 5.11 Conclusion Chapter 6: Analysis of the Hydrogen-Like Atom for Neuro-Oncology Based on Bloch´s NMR Flow Equation 6.1 Background to Quantum Mechanical Treatment of Bloch Flow Equation 6.2 Quantum Mechanical Understanding of Classical NMR/MRI 6.3 Mathematical Representation of NMR/MRI in Quantum Mechanical Domain 6.4 Formulation of the Yukawa Potential for NMR Wave Equation 6.5 Formulation of the Coulomb Potential for NMR Wave Equation 6.6 Quantum Neuro-Oncology 6.7 Analysis of Radiofrequency Pulse as a Function of Radial Distance of the Atoms 6.8 Discussion 6.9 Conclusion Chapter 7: Quantum Mechanical Model of the Bloch NMR Flow Equations for Transport Analysis of Quantum-Drugs in Microscopic Blo... 7.1 Introduction 7.2 Quantum Mechanical Model of Bloch NMR Flow Equations 7.3 Application to Nanotechnology 7.4 Quantum Drugs Model 7.5 Application of the WKB Approximation 7.6 The Tunnelling Effect of Quantum Drugs 7.7 Description of QM-Designed Drugs in Protein-Structured Nanomachines 7.8 Conclusion Chapter 8: Application of ``R´´ Machine Learning for Magnetic Resonance Relaxometry Data Representation and Classification of ... 8.1 Introduction 8.2 Dataset of NMR Relaxometry for Three Classes of Brain Tumor 8.3 Statistical Summary of the MRI Relaxometry Dataset 8.4 Visualization of the MRI Relaxometry Dataset 8.5 Model Construction 8.6 Model Prediction 8.7 Discussion of Results 8.8 Conclusion Chapter 9: Advanced Magnetic Resonance Image Processing and Quantitative Analysis in Avizo for Demonstrating Radiomic Contrast... 9.1 Potential Application of Radiomics 9.2 Factors Affecting Radiomic Feature Quantification 9.3 Machine Learning in Radiomics 9.4 Semi-Supervised Learning 9.5 Deep Learning 9.6 Research Opportunities and Challenges 9.7 Procedures in Advanced Image Processing and Quantitative Analysis 9.7.1 Processing Grayscale Images in Avizo 9.7.2 Interpretation as 2D Image or 3D Stack 9.7.3 Binarization of Grayscale Images 9.7.4 Image Separation 9.7.5 Image Analysis 9.7.6 Extracted Numerical Data 9.7.7 Visualizations of Extracted Data 9.7.8 Interactive Selection of the Data 9.8 Image-Based Filtering 9.9 Discussion 9.10 Conclusion Chapter 10: Computational Analysis of Magnetic Resonance Imaging Contrast Agents and Their Physico-Chemical Variables 10.1 Analytical Method for Monitoring the Dynamics of Responsive Contrast Agents 10.2 Bloch NMR Flow Model for Contrast Agents Moving in 1 D Tissue Spaces 10.3 Application of Model to Cardiovascular Disease 10.4 Computational Monitoring the Dynamics of Contrast Agents 10.5 Computational Model for Comparative Analysis of MRI Contrast Agents 10.6 Development of Machine Learning Classification Algorithm for Screening MRI Contrast Agents 10.6.1 Data Preparation 10.6.2 Data Visualization 10.6.3 XGBoost Model for Classification 10.7 Bridging the Gap Between Computational Models and Experimental Imaging 10.8 Discussion 10.9 Conclusion Chapter 11: General Conclusion Bibliography Index