ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Computational geomechanics theory and applications

دانلود کتاب تئوری و کاربردهای ژئومکانیک محاسباتی

Computational geomechanics theory and applications

مشخصات کتاب

Computational geomechanics theory and applications

ویرایش: [Second ed.] 
نویسندگان: , , , ,   
سری:  
ISBN (شابک) : 9781118350478, 1118350472 
ناشر:  
سال نشر: 2022 
تعداد صفحات: [497] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 35 Mb 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Computational geomechanics theory and applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تئوری و کاربردهای ژئومکانیک محاسباتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تئوری و کاربردهای ژئومکانیک محاسباتی

ژئومکانیک محاسباتی ویرایش جدید اولین کتاب که جنبه های دینامیکی محاسباتی ژئومکانیک را پوشش می دهد، اکنون شامل کاربردهای عملی تر و پوشش به روز تحقیقات فعلی در این زمینه است. توانایی مهندسان برای طراحی سازه های پیچیده تر در زمین. هنگامی که پروفسور اولک زینکیویچ استفاده از رویکردهای عددی برای دینامیک جامدات را در دانشگاه سوانسی آغاز کرد، آشکار شد که پیش‌بینی واقعی رفتار توده‌های خاک تنها در صورتی امکان‌پذیر است که رویکردهای تنش کل کنار گذاشته شوند. ژئومکانیک محاسباتی تئوری و کاربرد رویکردهای محاسباتی Zienkiewicz را معرفی می کند که تا به امروز اساس کار در زمینه خاک های اشباع و غیر اشباع باقی مانده است. این ویرایش دوم توسعه‌یافته که توسط دانشجویان گذشته و همکاران پروفسور Zienkiewicz نوشته شده است، فرمول‌بندی‌هایی را برای طیف وسیع‌تری از مسائل، از جمله بار شکست تحت بارگذاری استاتیک، تحکیم اشباع و غیراشباع، شکست هیدرولیکی، و روان‌سازی خاک تحت بارگذاری زلزله ارائه می‌کند. تیم نویسندگان شناخته شده بین‌المللی، فناوری‌های رایانه‌ای کنونی و پیشرفت‌های جدید در این زمینه، به‌ویژه در زمینه اشباع جزئی را در بر می‌گیرد، زیرا آنها خوانندگان را در مورد نحوه به‌کارگیری صحیح فرمول‌بندی در کارشان راهنمایی می‌کنند. این حجم بی نظیر: توضیح فرمول Biot-Zienkiewicz برای خاک های اشباع و غیراشباع کاربردهای متعددی را برای مشکلات استاتیکی و دینامیکی برای خاک های اشباع و غیر اشباع در مناطقی مانند مهندسی زلزله و شکستگی خاک ها و سنگ ها پوشش می دهد. فصل زمین لغزش های فاجعه بار سریع با استفاده از معادلات ادغام عمق و هیدرودینامیک ذرات صاف شده با کاربردها، نظریه محیط متخلخل را در حالت های اشباع و غیر اشباع ارائه می کند تا پایه و اساس مسئله مکانیک خاک را ایجاد کند، توصیف کمی از رفتار خاک شامل مدل های پلاستیسیته ساده، تعمیم یافته ارائه می کند انعطاف پذیری و مکانیک خاک حالت بحرانی شامل سوالات متعدد، مسائل، آزمایش های عملی، کاربردها در موقعیت های دیگر، و کد مثال برای GeHoMadrid Computational Geomechanics: Theory and Applications، نسخه دوم کتاب درسی ایده آل برای دوره های کارشناسی ارشد ژئوتکنیک تخصصی و عمومی است. یک مورد ضروری مرجع برای محققان ژئومکانیک و مهندسی ژئوتکنیک، برای توسعه‌دهندگان نرم‌افزار و کاربران نرم‌افزار اجزای محدود ژئوتکنیکی، و برای تحلیلگران ژئوتکنیک و مهندسین که از نتایج عددی به‌دست‌آمده از فرمول Biot-Zienkiewicz استفاده می‌کنند.


توضیحاتی درمورد کتاب به خارجی

COMPUTATIONAL GEOMECHANICS The new edition of the first book to cover the computational dynamic aspects of geomechanics, now including more practical applications and up-to-date coverage of current research in the field Advances in computational geomechanics have dramatically improved understanding of the behavior of soils and the ability of engineers to design increasingly sophisticated constructions in the ground. When Professor Olek Zienkiewicz began the application of numerical approaches to solid dynamics at Swansea University, it became evident that realistic prediction of the behavior of soil masses could only be achieved if the total stress approaches were abandoned. Computational Geomechanics introduces the theory and application of Zienkiewicz’s computational approaches that remain the basis for work in the area of saturated and unsaturated soil to this day. Written by past students and colleagues of Professor Zienkiewicz, this extended Second Edition provides formulations for a broader range of problems, including failure load under static loading, saturated and unsaturated consolidation, hydraulic fracturing, and liquefaction of soil under earthquake loading. The internationally-recognized team of authors incorporates current computer technologies and new developments in the field, particularly in the area of partial saturation, as they guide readers on how to properly apply the formulation in their work. This one-of-a-kind volume: Explains the Biot-Zienkiewicz formulation for saturated and unsaturated soil Covers multiple applications to static and dynamic problems for saturated and unsaturated soil in areas such as earthquake engineering and fracturing of soils and rocks Features a completely new chapter on fast catastrophic landslides using depth integrated equations and smoothed particle hydrodynamics with applications Presents the theory of porous media in the saturated and unsaturated states to establish the foundation of the problem of soil mechanics Provides a quantitative description of soil behavior including simple plasticity models, generalized plasticity, and critical state soil mechanics Includes numerous questions, problems, hands-on experiments, applications to other situations, and example code for GeHoMadrid Computational Geomechanics: Theory and Applications, Second Edition is an ideal textbook for specialist and general geotechnical postgraduate courses, and a must-have reference for researchers in geomechanics and geotechnical engineering, for software developers and users of geotechnical finite element software, and for geotechnical analysts and engineers making use of the numerical results obtained from the Biot-Zienkiewicz formulation.



فهرست مطالب

Cover
Title Page
Copyright Page
Contents
Preface
Chapter 1 Introduction and the Concept of Effective Stress
	1.1 Preliminary Remarks
	1.2 The Nature of Soils and Other Porous Media: Why a Full Deformation Analysis Is the Only Viable Approach for Prediction
	1.3 Concepts of Effective Stress in Saturated or Partially Saturated Media
		1.3.1 A Single Fluid Present in the Pores – Historical Note
		1.3.2 An Alternative Approach to Effective Stress
		1.3.3 Effective Stress in the Presence of Two (or More) Pore Fluids – Partially Saturated Media
	1.3.3 Note
	References
Chapter 2 Equations Governing the Dynamic, Soil–Pore Fluid, Interaction
	2.1 General Remarks on the Presentation
	2.2 Fully Saturated Behavior with a Single Pore Fluid (Water)
		2.2.1 Equilibrium and Mass Balance Relationship (u, w, and p)
		2.2.2 Simplified Equation Sets (u–p Form)
		2.2.3 Limits of Validity of the Various Approximations
	2.3 Partially Saturated Behavior with Air Pressure Neglected (pa=0)
		2.3.1 Why Is Inclusion of Partial Saturation Required in Practical Analysis?
		2.3.2 The Modification of Equations Necessary for Partially Saturated Conditions
	2.4 Partially Saturated Behavior with Air Flow Considered (pa0)
		2.4.1 The Governing Equations Including Air Flow
		2.4.2 The Governing Equation
	2.5 Alternative Derivation of the Governing Equation (of Sections –) Based on the Hybrid Mixture Theory
		2.5.1 Kinematic Equations
		2.5.2 Microscopic Balance Equations
		2.5.3 Macroscopic Balance Equations
		2.5.4 Constitutive Equations
		2.5.5 General Field Equations
		2.5.6 Nomenclature for Section
	2.6 Conclusion
	References
Chapter 3 Finite Element Discretization and Solution of the Governing Equations
	3.1 The Procedure of Discretization by the Finite Element Method
	3.2 u-p Discretization for a General Geomechanics´ Finite Element Code
		3.2.1 Summary of the General Governing Equations
		3.2.2 Discretization of the Governing Equation in Space
		3.2.3 Discretization in Time
		3.2.4 General Applicability of Transient Solution (Consolidation, Static Solution, Drained Uncoupled, and Undrained)
			3.2.4.1 Time Step Length
			3.2.4.2 Splitting or Partitioned Solution Procedures
			3.2.4.3 The Consolidation Equation
			3.2.4.4 Static Problems – Undrained and Fully Drained Behavior
		3.2.5 The Structure of the Numerical Equations Illustrated by their Linear Equivalent
		3.2.6 Damping Matrices
	3.3 Theory: Tensorial Form of the Equations
	3.4 Conclusions
	References
Chapter 4 Constitutive Relations: Plasticity
	4.1 Introduction
	4.2 The General Framework of Plasticity
		4.2.1 Phenomenological Aspects
		4.2.2 Generalized Plasticity
			4.2.2.1 Basic Theory
			4.2.2.2 Inversion of the Constitutive Tensor
		4.2.3 Classical Theory of Plasticity
			4.2.3.1 Formulation as a Particular Case of Generalized Plasticity Theory
			4.2.3.2 Yield and Failure Surfaces
			4.2.3.3 Hardening, Softening, and Failure
			4.2.3.4 Some Frequently Used Failure and Yield Criteria. Pressure-Independent Criteria: von Mises–Huber Yield Criterion
			4.2.3.5 Consistency Condition for Strain-Hardening Materials
			4.2.3.6 Computational Aspects
	4.3 Critical State Models
		4.3.1 Introduction
		4.3.2 Critical State Models for Normally Consolidated Clays
			4.3.2.1 Hydrostatic Loading: Isotropic Compression Tests
			4.3.2.2 Triaxial Rest
			4.3.2.3 Critical State
		4.3.3 Critical State Models for Sands
			4.3.3.1 Hydrostatic Compression
			4.3.3.2 Dense and Loose Behavior
			4.3.3.3 Critical State Line
			4.3.3.4 Dilatancy
			4.3.3.5 A Unified Approach to Density and Pressure Dependency of Sand Behavior: The State Parameter
			4.3.3.6 Constitutive Modelling of Sand Within Critical State Framework
	4.4 Generalized Plasticity Modeling
		4.4.1 Introduction
		4.4.2 A Generalized Plasticity Model for Clays
			4.4.2.1 Normally Consolidated Clays
			4.4.2.2 Overconsolidated Clays
		4.4.3 The Basic Generalized Plasticity Model for Sands
			4.4.3.1 Monotonic Loading
			4.4.3.2 Three-Dimensional Behavior
			4.4.3.3 Unloading and Cyclic Loading
		4.4.4 Anisotropy
			4.4.4.1 Introductory Remarks
			4.4.4.2 Proposed Approach
			4.4.4.3 A Generalized Plasticity Model for the Anisotropic Behavior of Sand
		4.4.5 A State Parameter-Based Generalized Plasticity Model for Granular Soils
		4.4.6 Generalized Plasticity Modeling of Bonded Soils
		4.4.7 Generalized Plasticity Models for Unsaturated Soils
		4.4.8 Recent Developments of Generalized Plasticity Models
		4.4.9 A Note on Implicit Integration of Generalized Plasticity Models
	4.5 Alternative Advanced Models
		4.5.1 Introduction
		4.5.2 Kinematic Hardening Models
		4.5.3 Bounding Surface Models and Generalized Plasticity
		4.5.4 Hypoplasticity and Incrementally Nonlinear Models
	4.6 Conclusion
	References
Chapter 5 Special Aspects of Analysis and Formulation: Radiation Boundaries, Adaptive Finite Element Requirement, and Incompressible Behavior
	5.1 Introduction
	5.2 Far-Field Solutions in Quasi-Static Problems
	5.3 Input for Earthquake Analysis and Radiation Boundary
		5.3.1 Specified Earthquake Motion: Absolute and Relative Displacements
		5.3.2 The Radiation Boundary Condition: Formulation of a One-Dimensional Problem
		5.3.3 The Radiation Boundary Condition: Treatment of Two-Dimensional Problems
		5.3.4 The Radiation Boundary Condition: Scaled Boundary-Finite Element Method
		5.3.5 Earthquake Input and the Radiation Boundary Condition – Concluding Remarks
	5.4 Adaptive Refinement for Improved Accuracy and the Capture of Localized Phenomena
		5.4.1 Introduction to Adaptive Refinement
		5.4.2 Adaptivity in Time
		5.4.3 Localization and Strain Softening: Possible Nonuniqueness of Numerical Solutions
		5.4.4 Regularization Through Gradient-Dependent Plasticity
	5.5 Stabilization of Computation for Nearly Incompressible Behavior with Mixed Interpolation
		5.5.1 The Problem of Incompressible Behavior Under Undrained Conditions
		5.5.2 The Velocity Correction and Stabilization Process
		5.5.3 Examples Illustrating the Effectiveness of the Operator Split Procedure
		5.5.4 The Reason for the Success of the Stabilizing Algorithm
		5.5.5 An Operator Split Stabilizing Algorithm for the Consolidation of Saturated Porous Media
		5.5.6 Examples Illustrating the Effectiveness of the Operator Split Stabilizing Algorithm for the Consolidation of Saturated Porous Media
		5.5.7 Further Improvements
	5.6 Conclusion
	5.6 Notes
	References
Chapter 6 Examples for Static, Consolidation, and Hydraulic Fracturing Problems
	6.1 Introduction
	6.2 Static Problems
		6.2.1 Example (a): Unconfined Situation – Small Constraint
			6.2.1.1 Embankment
			6.2.1.2 Footing
		6.2.2 Example (b): Problems with Medium (Intermediate) Constraint on Deformation
		6.2.3 Example (c): Strong Constraints – Undrained Behavior
		6.2.4 Example (d): The Effect of the p Section of the Yield Criterion
	6.3 Seepage1
		6.3.1 Concluding Remarks
	6.4 Consolidation2
		6.4.1 Benchmark for a Poroelastic Column
		6.4.2 Single-Aquifer Withdrawal
		6.4.3 3-D Consolidation with Adaptivity in Time
	6.5 Hydraulic Fracturing: Fracture in a Fully Saturated Porous Medium Driven By Increase in Pore Fluid Pressure3
		6.5.1 2-D and 3-D Quasi-Static Hydraulic Fracturing
			6.5.1.1 Solid Phase: Continuous Medium
			6.5.1.2 Solid Phase: Cohesive Fracture Model – Mode I Crack Opening
			6.5.1.3 Solid Phase: Cohesive Fracture Model – Mode II and Mixed Mode Crack Opening
			6.5.1.4 Linear Momentum Balance for the Mixture Solid+Water
			6.5.1.5 Liquid Phase: Medium and Crack Permeabilities
			6.5.1.6 Mass Balance Equation for Water (Incorporating Darcy´s Law)
			6.5.1.7 Discretized Governing Equations and Solution Procedure
			6.5.1.8 Examples
		6.5.2 Dynamic Fracturing in Saturated Porous Media
		6.5.3 Coupling of FEM for the Fluid with Discrete or Nonlocal Methods for the Fracturing Solid
	6.6 Conclusion
	References
Chapter 7 Validation of Prediction by Centrifuge
	7.1 Introduction
	7.2 Scaling Laws of Centrifuge Modelling
	7.3 Centrifuge Test of a Dyke Similar to a Prototype Retaining Dyke in Venezuela
	7.4 The Velacs Project
		Outline placeholder
			General Analysing Procedure
		7.4.1 Description of the Precise Method of Determination of Each Coefficient in the Numerical Model
		7.4.2 Modelling of the Laminar Box
		7.4.3 Parameters Identified for Pastor-Zienkiewicz Mark III Model
	7.5 Comparison with the Velacs Centrifuge Experiment
		7.5.1 Description of the Models
		7.5.2 Comparison of Experiment and Prediction
	7.6 Centrifuge Test of a Retaining Wall (Dewooklar et al )
	7.7 Conclusions
	References
Chapter 8 Applications to Unsaturated Problems
	8.1 Introduction
	8.2 Isothermal Drainage of Water from a Vertical Column of Sand
	8.3 Air Storage Modeling in an Aquifer
	8.4 Comparison of Consolidation and Dynamic Results Between Small Strain and Finite Deformation Formulation
		8.4.1 Consolidation of Fully Saturated Soil Column
		8.4.2 Consolidation of Fully and Partially Saturated Soil Column
		8.4.3 Consolidation of Two-Dimensional Soil Layer Under Fully and Partially Saturated Conditions
		8.4.4 Fully Saturated Soil Column Under Earthquake Loading
		8.4.5 Elastoplastic Large-Strain Behavior of an Initially Saturated Vertical Slope Under a Gravitational Loading and Horizontal Earthquake Followed by a Partially Saturated Consolidation Phase
	8.5 Dynamic Analysis with a Full Two-Phase Flow Solution of a Partially Saturated Soil Column Subjected to a Step Load
	8.6 Compaction and Land Subsidence Analysis Related to the Exploitation of Gas Reservoirs1
	8.7 Initiation of Landslide in Partially Saturated Soil2
	8.8 Conclusion
	References
Chapter 9 Prediction Application and Back Analysis to Earthquake Engineering: Basic Concepts, Seismic Input, Frequency, and Time Domain Analysis
	9.1 Introduction
	9.2 Material Properties of Soil
	9.3 Characteristics of Equivalent Linear Method
	9.4 Port Island Liquefaction Assessment Using the Cycle-Wise Equivalent Linear Method (Shiomi et al. )
		9.4.1 Integration of Dynamic Equation by Half-Cycle of Wave
		9.4.2 Example of Analysis
	9.5 Port Island Liquefaction Using One-Column Nonlinear Analysis in Multi-Direction
		9.5.1 Introductory Remarks
		9.5.2 Multidirectional Loading Observed and Its Numerical Modeling – Simulation of Liquefaction Phenomena Observed at Port Island
			9.5.2.1 Conditions and Modeling
			9.5.2.2 Results of Simulation
			9.5.2.3 Effects of Multidirectional Loading
	9.6 Simulation of Liquefaction Behavior During Niigata Earthquake to Illustrate the Effect of Initial (Shear) Stress
		9.6.1 Influence of Initial Shear Stress
			9.6.1.1 Significance of ISS Component to the Responses
				9.6.1.1.1 Response Acceleration
			9.6.1.2 Excess Pore Water Pressure
				9.6.1.2.1 Theoretical Consideration
	9.7 Large-Scale Liquefaction Experiment Using Three-Dimensional Nonlinear Analysis
		9.7.1 Analytical Model and Condition
			9.7.1.1 Constitutive Model
			9.7.1.2 Dilatancy Modeling
			9.7.1.3 Determination of the Material Parameters
		9.7.2 Input Motion
		9.7.3 Analysis Results
	9.8 Lower San Fernando Dam Failure
	References
Chapter 10 Beyond Failure: Modeling of Fluidized Geomaterials: Application to Fast Catastrophic Landslides
	10.1 Introduction
	10.2 Mathematical Model: A Hierarchical Set of Models for the Coupled Behavior of Fluidized Geomaterials
		10.2.1 General 3D Model
		10.2.2 A Two-Phase Depth-Integrated Model
		10.2.3 A Note on Reference Systems
	10.3 Behavior of Fluidized Soils: Rheological Modeling Alternatives
		10.3.1 Bingham Fluid
		10.3.2 Frictional Fluid
		10.3.3 Cohesive-Frictional Fluids
		10.3.4 Erosion
	10.4 Numerical Modeling: 2-Phase Depth-Integrated Coupled Models
		10.4.1 SPH Fundamentals
		10.4.2 An SPH Lagrangian Model for Depth-Integrated Equations
			10.4.2.1 Introduction and Fundamentals of SPH
			10.4.2.2 SPH Discretization
			10.4.2.3 SPH Modeling of Two-Phase Depth-Integrated Equations
			10.4.2.4 Boundary Conditions in Two-Phase Depth-Integrated Equations
			10.4.2.5 Excess Pore Water Pressure Modeling in Two-Phase Depth-Integrated Equations
	10.5 Examples and Applications
		10.5.1 The Thurwieser Rock Avalanche
		10.5.2 A Lahar in Popocatépetl Volcano
		10.5.3 Modeling of Yu Tung Road Debris Flow
	10.6 Conclusion
	10.6 Note
	References
Index
EULA




نظرات کاربران