دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Pradip Majumdar
سری:
ISBN (شابک) : 1498703747, 9781498703741
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 664
[697]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 Mb
در صورت تبدیل فایل کتاب Computational Fluid Dynamics and Heat Transfer (Computational & Physical Processes in Mechanics & Thermal Scienc) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دینامیک سیالات محاسباتی و انتقال حرارت (فرایندهای محاسباتی و فیزیکی در مکانیک و علوم حرارتی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درک کاملی از دینامیک سیالات و انتقال گرما و جرم ارائه می دهد. ویرایش دوم شامل فصول جدیدی در مورد تولید مش و مدلسازی محاسباتی جریان آشفته است. این متن با ترکیب تئوری و عمل در مسائل کلاسیک و کدهای کامپیوتری، شامل نمونههای کار شده متعددی است. دانشآموزان میتوانند با استفاده از کدهای تجاری مانند ANSYS، STAR CCM+ و COMSOL، مدلهای تجزیه و تحلیل محاسباتی را برای مسائل پیچیده با کارآمدتر توسعه دهند.
با توضیحات دقیق در مورد نحوه پیادهسازی روششناسی محاسباتی در کد رایانه، دانشآموزان میتوانند می توانند مسائل پیچیده را به تنهایی حل کنند و مدل های شبیه سازی سفارشی خود را توسعه دهند، از جمله مشکلات در انتقال حرارت، انتقال جرم و جریان سیال. این مشکلات در مشتقات و ارقام گام به گام حل و نشان داده شده اند.
ویژگی ها
دینامیک سیالات محاسباتی و انتقال حرارت، ویرایش دوم، برای مدرسان مهندسی و دانشجویانی که دورههای انتقال حرارت محاسباتی و دینامیک سیالات محاسباتی را میگذرانند، ارزشمند است.
This book provides a thorough understanding of fluid dynamics and heat and mass transfer. The Second Edition contains new chapters on mesh generation and computational modeling of turbulent flow. Combining theory and practice in classic problems and computer code, the text includes numerous worked-out examples. Students will be able to develop computational analysis models for complex problems more efficiently using commercial codes such as ANSYS, STAR CCM+, and COMSOL.
With detailed explanations on how to implement computational methodology into computer code, students will be able to solve complex problems on their own and develop their own customized simulation models, including problems in heat transfer, mass transfer, and fluid flows. These problems are solved and illustrated in step-by-step derivations and figures.
FEATURES
Computational Fluid Dynamics and Heat Transfer, Second Edition, is valuable to engineering instructors and students taking courses in computational heat transfer and computational fluid dynamics.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Preface Author Part I: Basic Equations and Numerical Analysis Chapter 1 Review of Basic Laws and Equations 1.1 Basic Equations 1.2 Fluid Flow 1.2.1 Fluid Properties 1.2.1.1 Kinematics of Fluid and Kinematic Properties 1.2.2 Basic Equations in Integral Form 1.2.2.1 Basic Equations for a System 1.2.2.2 Basic Equations for a Control Volume 1.2.3 Differential Analysis of Fluid Motion 1.2.3.1 Conservation of Mass 1.2.4 Boundary Conditions for Flow Field 1.2.4.1 Solid–Fluid Interface 1.2.4.2 Fluid–Fluid Interface 1.3 Heat Transfer 1.3.1 Basic Modes and Transport Rate Equation 1.3.2 The First Law of Thermodynamics and Heat Equation 1.3.3 Initial and Boundary Conditions for Heat Transfer 1.4 Mass Transfer 1.4.1 Basic Modes and Transport Rate Equation 1.4.2 Conservation of Mass Species and Mass Concentration Equation 1.4.3 Initial and Boundary Conditions for Mass Transfer 1.5 Generalized Form of Transport Equation 1.6 Mathematical Classification of Governing Equations Problems Chapter 2 Approximations and Errors 2.1 Truncation Error 2.2 Round-off Error 2.2.1 Significant Figures or Digits 2.2.2 Computer Number System 2.2.3 Machine Epsilon 2.3 Error Definitions 2.4 Approximate Error 2.5 Convergence Criteria Problems Chapter 3 Numerical Solutions of Systems of Equations 3.1 Mathematical Background 3.1.1 Representation of the System of Equations 3.1.2 Cramer’s Rule and the Elimination of Unknowns 3.2 Direct Methods 3.2.1 Gaussian Elimination 3.2.2 Gauss–Jordan Elimination Method 3.2.3 Decomposition or Factorization Methods 3.2.4 Banded Systems 3.2.5 Error Equation and Iterative Refinement 3.3 Iterative Methods 3.3.1 Jacobi Method 3.3.2 Gauss–Seidel Method 3.3.3 Convergence Criterion for Iterative Methods 3.3.4 The SOR Method 3.3.5 CG Method 3.3.6 Preconditioned CG Method 3.3.7 Generalized Minimal Residuals Method 3.3.8 GMRES Method Problems Chapter 4 Numerical Integration 4.1 Newton–Cotes Integration Formulas 4.1.1 The Trapezoidal Rule 4.1.2 Simpson’s Integration Formula 4.1.3 Summary of Newton–Cotes Integration Formulas 4.2 Romberg Integration 4.3 Gauss Quadrature 4.3.1 Two-Point Gauss–Legendre Formula 4.3.2 Higher-Point Gauss–Legendre Formulas 4.4 Multidimensional Numerical Integration Problems Part II: Finite Difference – Control Volume Method Chapter 5 Basic Steps in Finite Difference–Control Volume Method 5.1 Introduction and Basic Steps in Finite Difference Method 5.2 Discretization of the Domain 5.3 Discretization of the Mathematical Model 5.3.1 The Taylor Series Method 5.3.1.1 Numerical Differentiation – Finite Difference Formulas 5.3.2 Control Volume Method 5.4 One-Dimensional Steady-State Diffusion 5.5 Variable Source Term 5.6 Boundary Conditions 5.7 Grid Size Distribution 5.8 Nonuniform Transport Property 5.9 Nonlinearity 5.10 Linearization of a Variable Source Term Problems Chapter 6 Finite Difference–Control Volume Method: Multidimensional Problems 6.1 Two-Dimensional Steady-State Problems 6.2 Boundary Conditions 6.2.1 Corner Boundary Nodes 6.3 Irregular Geometries 6.4 Three-Dimensional Steady-State Problems 6.5 Solution Techniques and Computer Implementation 6.5.1 Solution Algorithm Based on the Gauss–Seidel Method 6.5.2 Solution by Combination of TDMA and Gauss–Seidel Method (Line-by-Line Method) Problems Chapter 7 Finite Difference–Control Volume Method: Unsteady State Diffusion Equation 7.1 Time Discretization Procedure 7.2 Explicit Scheme 7.2.1 Discretization Equation by Control Volume Approach 7.2.2 Finite Difference Equation by Taylor Series Expansion 7.2.3 Stability Consideration 7.2.4 Other Explicit Schemes 7.2.5 Boundary Conditions 7.3 Implicit Scheme 7.3.1 Discretization Equation by Control Volume Approach 7.3.2 Finite Difference Equation by Taylor Series Expansion 7.3.3 A General Formulation of Fully Implicit Scheme for One- Dimensional Problems 7.3.4 A General Formulation of Fully Implicit Scheme for Two- Dimensional Problems 7.3.5 Solution Methods for a Two-Dimensional Implicit Scheme 7.3.6 Boundary Conditions for Implicit Scheme 7.4 Crank–Nicolson Scheme 7.4.1 Solution Methods for Crank–Nicolson Method 7.5 Splitting Methods 7.5.1 ADI Method 7.5.2 ADE Method Problems Chapter 8 Finite Difference–Control Volume Method: Convection Problems 8.1 Spatial Discretization Using Control Volume Method 8.1.1 Central Difference Scheme 8.1.2 Upwind Scheme 8.1.3 Exponential Scheme 8.1.4 Hybrid Scheme 8.1.5 Power Law Scheme 8.1.6 Generalized Convection–Diffusion Scheme 8.1.7 Higher-Order Discretization Schemes for Convective Terms 8.1.7.1 Second-Order Upwind Scheme 8.1.7.2 Third-Order QUICK Scheme 8.1.7.3 Derivation of Discretization Equation Using QUICK Scheme 8.1.7.4 MUSCL Scheme: Monotonic Upstream-Centered Scheme for Conservation Laws 8.2 Discretization of a General Transport Equation 8.2.1 One-Dimensional Unsteady-State Problems 8.2.2 Two-Dimensional Unsteady-State Problem 8.2.3 Three-Dimensional Unsteady-State Problem 8.3 Solution of Flow Field 8.3.1 Stream Function–Vorticity-Based Method 8.3.2 Direct Solution with the Primitive Variables Problems Chapter 9 Additional Features in Computational Model and Mesh Generations 9.1 Boundary Conditions 9.1.1 Inlet Conditions 9.1.1.1 Restrictions on the Selection Inlet Location 9.1.2 Outlet Conditions 9.1.2.1 Restrictions of Assigning Fully Developed Outflow Conditions 9.1.3 Wall Boundary Conditions 9.1.4 Pressure Conditions at the Inlets and Outlets 9.1.5 Symmetric and Periodic Boundary Conditions 9.1.5.1 Symmetric Boundary Planes and Conditions 9.1.6 Periodic Boundary Planes and Boundary Conditions 9.2 Mesh Types and Mesh Generation 9.2.1 Mesh Types 9.2.1.1 Two-Dimensional Mesh 9.2.1.2 Three-Dimensional Meshes 9.2.2 Mesh Size Distributions 9.2.2.1 Unstructured Mesh 9.2.2.2 Hybrid Mesh 9.2.2.3 Skewness 9.2.3 Mesh Generation Procedure 9.2.4 Multiblock Mesh System 9.2.5 Prism Layer 9.3 Multigrid (MG) Method 9.3.1 Algebraic Multigrid Method Chapter 10 Turbulent Flow Modeling 10.1 Physical Description of Turbulence 10.2 Governing Equations for Turbulent Fluid Flow Analysis 10.3 Computational Model for Turbulence Flow 10.3.1 Direct Numerical Simulation 10.3.2 Averaged or Filtered Simulation 10.3.2.1 Large Eddy Simulation 10.4 Reynolds Averaged Navier-Stokes Model 10.4.1 Turbulence Kinetic Energy Transport Equation 10.4.2 Boussinesq Eddy Viscosity Concept and Prandtl Mixing Length Model 10.4.2.1 Boussinesq Eddy Viscosity 10.4.2.2 Prandtl Mixing Length 10.5 Different Classes of Turbulence Closure Models 10.6 Classification of Turbulence Models 10.6.1 Algebraic Turbulence Model or Zero-Equation Models 10.6.2 One-Equation Model 10.6.2.1 Prandtl–Emmons–Glushko Model 10.6.2.2 Spalart–Allmaras Model 10.6.2.3 Baldwin–Barth Model 10.6.3 Two-Equation Model 10.6.3.1 k −ɛ̌Turbulence Model 10.6.3.2 Two-Equation k -ω Turbulence Models 10.6.3.3 Low Reynolds Turbulence Model 10.7 Reynolds Stress Model 10.8 Near-Wall Region Modeling 10.9 Estimation of y-Plus 10.9.1 Procedure to Estimate y[sup(+)] in Wall Function Treatment 10.10 Boundary Condition for Turbulence Quantities 10.10.1 Inlet Turbulence 10.10.2 Wall Boundary Condition Part III: Finite Element Method Chapter 11 Introduction and Basic Steps in Finite Element Method 11.1 Comparison between Finite Difference–Control Volume Method and FEM 11.2 Basic Steps in FEMs 11.3 Integral Formulation 11.3.1 Variational Formulation 11.3.2 Method of Weighted Residuals 11.4 Variational Methods 11.4.1 The Rayleigh–Ritz Variational Method 11.4.2 Weighted Residual Variational Methods Problems Chapter 12 Element Shape Functions 12.1 One-Dimensional Element 12.1.1 One-Dimensional Linear Element 12.1.2 One-Dimensional Quadratic Line Element 12.1.3 One-Dimensional Cubic Element 12.2 Two-Dimensional Element 12.2.1 Linear Triangular Element 12.2.2 Quadratic Triangular Element 12.2.3 Two-Dimensional Quadrilateral Elements 12.3 Three-Dimensional Element 12.3.1 Three-Dimensional Tetrahedron Element 12.3.2 Three-Dimensional Hexahedron Element Problems Chapter 13 Finite Element Method: One-Dimensional Steady State Problems 13.1 Finite Element Formulation Using Galerkin Method 13.2 Finite Element Formulation Using Variational Approach 13.3 Boundary Conditions 13.3.1 Boundary Condition of the Second Kind or Constant 13.3.2 Mixed Boundary Conditions 13.4 Variable Source Term 13.5 Axisymmetric Problems Problems Chapter 14 Finite Element Method: Multidimensional Steady-State Problems 14.1 Two-Dimensional Steady-State Diffusion Equation 14.1.1 Step 1: Mesh Generation or Discretization of the Solution Domain 14.1.2 Step 2: Element and Node Numbering 14.1.3 Step 3: Selection of Approximate Solution Function 14.1.4 Step 4: Formulation of an Integral Statement Using Galerkin’s Approach 14.1.5 Step 5: Formation of Element Characteristics Equation 14.1.6 Step 6: Assembly of Element Equations and Formation of Global System 14.2 Three-Dimensional Problems 14.4 Point Source Problems Chapter 15 Finite Element Method: Unsteady-State Problems 15.1 D iscretization Scheme 15.2 One-Dimensional Unsteady-State Problem 15.2.1 Semi-Discrete Finite Element Formulation 15.2.2 Time Approximation 15.2.3 Stability Consideration 15.3 Two-Dimensional Unsteady-State Diffusion Equation 15.4 Three-Dimensional Unsteady-State Diffusion Equation Problems Chapter 16 Finite Element Method: Convection Problems 16.1 Classification of Finite Element Methods for Convection Problems 16.2 Velocity-Pressure or Mixed Formulation 16.2.1 One-Dimensional Convection-Diffusion Problem 16.2.2 Two-Dimensional Viscous Incompressible Flow 16.2.3 Unsteady Two-Dimensional Viscous Incompressible Flow 16.2.4 Unsteady Three-Dimensional Viscous Incompressible Flow 16.2.5 Convective Heat and Mass Transfer 16.3 Solution Methods 16.3.1 Steady-State Problems 16.3.1.1 Picard Method 16.3.1.2 Newton-Raphson Method 16.3.1.3 Velocity-Pressure Correction Method 16.3.2 Unsteady-State Problem Problems Appendix A: Review of Vectors and Matrices Appendix B: Integral Theorems Bibliography Index