دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2021 نویسندگان: Noemi Gyori (editor), Jana Hutter (editor), Vishwesh Nath (editor), Marco Palombo (editor), Marco Pizzolato (editor), Fan Zhang (editor) سری: ISBN (شابک) : 3030730174, 9783030730178 ناشر: Springer سال نشر: 2021 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 84 مگابایت
در صورت تبدیل فایل کتاب Computational Diffusion MRI: International MICCAI Workshop, Lima, Peru, October 2020 (Mathematics and Visualization) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب MRI انتشار محاسباتی: کارگاه بین المللی MICCAI، لیما، پرو، اکتبر 2020 (ریاضیات و تجسم) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب آخرین پیشرفت ها را در زمینه بسیار فعال و به سرعت در
حال رشد MRI انتشاری ارائه می دهد. مقالات منتخب ضمن ارائه
دیدگاههای جدید در مورد چالشهای اخیر تحقیقاتی در این زمینه،
نقطه شروع ارزشمندی را برای هر کسی که علاقهمند به یادگیری
تکنیکهای محاسباتی برای انتشار MRI است، فراهم میکند. این
کتاب شامل مشتقات دقیق ریاضی، تعداد زیادی تجسم غنی و تمام
رنگی، و نتایج مرتبط بالینی است. به این ترتیب، مورد توجه
محققان و پزشکان در زمینههای علوم کامپیوتر، فیزیک MRI و
ریاضیات کاربردی است. خواننده مشارکتهای متعددی را خواهد یافت
که طیف وسیعی از موضوعات را پوشش میدهد، از مبانی ریاضی فرآیند
انتشار و تولید سیگنال گرفته تا روشهای محاسباتی جدید و
تکنیکهای تخمین برای بازیابی in-vivo ویژگیهای ریزساختاری و
اتصال، و همچنین انتشار-آرامشدن و کاربردهای خط مقدم در
تحقیقات و عملکرد بالینی.
This book presents the latest developments in the highly
active and rapidly growing field of diffusion MRI. While
offering new perspectives on the most recent research
challenges in the field, the selected articles also provide a
valuable starting point for anyone interested in learning
computational techniques for diffusion MRI. The book includes
rigorous mathematical derivations, a large number of rich,
full-colour visualizations, and clinically relevant results.
As such, it is of interest to researchers and practitioners
in the fields of computer science, MRI physics, and applied
mathematics. The reader will find numerous contributions
covering a broad range of topics, from the mathematical
foundations of the diffusion process and signal generation to
new computational methods and estimation techniques for the
in-vivo recovery of microstructural and connectivity
features, as well as diffusion-relaxometry and frontline
applications in research and clinical practice.
Programme Committee Preface Contents Diffusion MRI Signal Acquisition Image Reconstruction from Accelerated Slice-Interleaved Diffusion Encoding Data 1 Introduction 2 Methods 2.1 SIDE Acquisition 2.2 Reconstruction 2.3 Optimization 3 Experiments 3.1 Materials 3.2 Results 4 Conclusion References Towards Learned Optimal q-Space Sampling in Diffusion MRI 1 Introduction 1.1 Main Contributions 2 Method 2.1 Forward Model: Sub-Sampling Layer 2.2 Reconstruction Model 2.3 Optimization 3 Experimental Evaluation 3.1 Dataset 3.2 Training Settings 3.3 Results and Discussion 4 Conclusion 5 Supplementary Materials References A Signal Peak Separation Indexpg for Axisymmetric B-Tensor Encoding 1 Introduction 2 Theory 2.1 A Toy Model of Fascicle Crossing Under B-Tensor Encoding 2.2 The Signal Peak Separation Index 3 Methods 4 Results 5 Discussion and Conclusion References Orientation Processing: Tractography and Visualization Improving Tractography Accuracy Using Dynamic Filtering 1 Introduction 2 Materials and Methods 2.1 Initial Set of Streamlines 2.2 Parametric Representation of the Streamlines 2.3 Optimization 2.4 Data and Experiments 3 Results and Discussion 4 Conclusions References Diffeomorphic Alignment of Along-Tract Diffusion Profiles from Tractography 1 Introduction 2 Alignment of Along-Tract Diffusion Measure Profiles 2.1 Representation 2.2 Objective Function for Joint Alignment 2.3 Alternating Minimization for Subject-Level and Tract-Level Alignment 3 Results 3.1 Data 3.2 Along-Tract FA Profiles Before and After Joint Alignment 3.3 Reduced Coefficient of Variation 3.4 Subject-Wise Inter-tract Correlations 3.5 Intraclass Correlation Coefficient for Reliability Across Time Points 4 Discussion References Direct Reconstruction of Crossing Muscle Fibers in the Human Tongue Using a Deep Neural Network 1 Introduction 2 Methods 2.1 Training Data and Ground Truth 2.2 Fiber Estimation Network 2.3 Fiber Estimation Loss 2.4 Training Procedure 3 Experiments and Results 3.1 Quantitative Evaluation on Synthetic Tongue HARDI Data 3.2 Qualitative Results on Post-mortem Human Tongue Data 4 Discussion and Conclusions References Learning Anatomical Segmentations for Tractography from Diffusion MRI 1 Introduction 2 Materials and Methods 2.1 Data 2.2 Data Representations 2.3 Architecture 2.4 Training 2.5 Tracts 2.6 Evaluation Criteria 3 Results and Discussion 3.1 Evaluation 1: Q-Space Sampling Density 3.2 Evaluation 2: Input Representations 3.3 Evaluation 3: Generalization 3.4 Evaluation 4: Tract Similarity 4 Conclusion References Diffusion MRI Fiber Orientation Distribution Function Estimation Using Voxel-Wise Spherical U-Net 1 Introduction 2 Background and Method 2.1 Voxel-Wise Spherical U-Net 3 Dataset 4 Experiments and Implementation Details 5 Results and Conclusions References Microstructure Modeling and Representation Stick Stippling for Joint 3D Visualization of Diffusion MRI Fiber Orientations and Density 1 Introduction 2 Methods 2.1 Diffusion Modeling and the Fixel Representation 2.2 Fixel Glyph Visualization 3 Experiments and Results 3.1 Clinical Data Experiment 3.2 HCP Experiment 3.3 RESOLVE Experiment 4 Discussion and Conclusions References Q-Space Quantitative Diffusion MRI Measures Using a Stretched-Exponential Representation 1 Introduction 2 Theory 2.1 Diffusion MR Signal Representation 2.2 Q-Space Domain Quantitative Measures 2.3 Numerical Implementation 2.4 Optimization of Stretched-Exponential Representation 3 Materials and Methods 3.1 Ex Vivo rat brain data 3.2 In Vivo Human brain data 3.3 Comparison to the Q-Space Measures from Different Methods 4 Results and Discussion 5 Conclusions References Repeatability of Soma and Neurite Metrics in Cortical and Subcortical Grey Matter 1 Introduction 2 Methods 2.1 Image Acquisition and Pre-processing 2.2 Image Processing and Analysis 3 Results 4 Discussion References DW-MRI Microstructure Model of Models Captured Via Single-Shell Bottleneck Deep Learning 1 Introduction 2 Related Work 3 Data Acquisition 4 Proposed Method 5 Results 6 Discussion References Deep Learning Model Fitting for Diffusion-Relaxometry: A Comparative Study 1 Introduction 2 Methods 2.1 qMRI Model Fitting with DNNs 2.2 In Silico Study 2.3 In Vivo study 3 Results 4 Discussion 5 Conclusion References Pretraining Improves Deep Learning Based Tissue Microstructure Estimation 1 Introduction 2 Methods 2.1 Problem Formulation 2.2 Signal Generation for Pretraining 2.3 Backbone Deep Network 2.4 Pretraining with the Auxiliary Dataset and Fine-Tuning 2.5 Implementation Details 3 Results 4 Discussion 5 Conclusion References Signal Augmentation and Super Resolution Enhancing Diffusion Signal Augmentation Using Spherical Convolutions 1 Introduction 2 Signal Augmentation 2.1 Deep Learning Models 2.2 Spherical Deep Learning Models 2.3 Material 3 Evaluation 3.1 Results 4 Discussion 5 Conclusion References Hybrid Graph Convolutional Neural Networks for Super Resolution of DW Images 1 Introduction 2 Dataset 3 Methods 3.1 Coarse SR Prediction in 3D Grid Structure Space 3.2 Refinement by GCNN in Diffusion Gradient Space 3.3 Loss Function 4 Experiments 5 Conclusion References Manifold-Aware CycleGAN for High-Resolution Structural-to-DTI Synthesis 1 Introduction 2 Method 2.1 Log-Euclidean Metric 2.2 Adversarial Loss 2.3 Cycle Consistency Loss 2.4 Manifold-Aware Wasserstein CycleGAN 3 Experiments 4 Discussion and Conclusion References Diffusion MRI Applications Beyond Lesion-Load: Tractometry-Based Metrics for Characterizing White Matter Lesions within Fibre Pathways 1 Introduction 2 Theory and Methods 2.1 Clinical Assessment 2.2 Acquisition 2.3 Processing 2.4 Proposed Metrics 3 Results 3.1 Lesion Mapping 3.2 Volumetric Metrics 3.3 Tractometry-Based Metrics 4 Discussion and Conclusion References Multi-modal Brain Age Estimation: A Comparative Study Confirms the Importance of Microstructure 1 Introduction 2 Data and Materials 3 Methods 3.1 Brain Age Estimation 3.2 Associations with IDPs and Non-IDP Variables 4 Results 4.1 Brain Age Estimation 4.2 Association with Brain IDPs 4.3 Association with Cardiac Variables 5 Discussion References Longitudinal Parcellation of the Infant Cortex Using Multi-modal Connectome Harmonics 1 Introduction 2 Methods 2.1 Data and Preprocessing 2.2 Connectivity Matrices 2.3 Iterative Multi-modal Parcellation Via Connectome Harmonics 2.4 Optimal Cluster Number Determination 3 Results 3.1 Homogeneity 3.2 Community Detection 4 Discussion 5 Conclusion References Automatic Segmentation of Dentate Nuclei for Microstructure Assessment: Example of Application to Temporal Lobe Epilepsy Patients 1 Introduction 2 Methods 2.1 Subjects 2.2 MRI Protocol 2.3 DWI Processing 2.4 DNs Segmentation 2.5 Post Processing for OPAL and CNN 2.6 Quantitative Evaluation 2.7 Comparison of Automatic Methods 2.8 Clinical Application to TLE Data 3 Results 3.1 Comparison of the Three Automatic Methods 3.2 Application to TLE Dataset 4 Discussion 5 Conclusion References Two Parallel Stages Deep Learning Network for Anterior Visual Pathway Segmentation 1 Introduction 2 Methods 2.1 Data Preprocessing 2.2 Two Parallel Stages Network Architecture 3 Experiments 3.1 Dataset 3.2 Implementation Details 3.3 Results 4 Conclusion References Exploring DTI Benchmark Databases Through Visual Analytics 1 Introduction 2 Related Work 3 Use Case 4 Implementation 5 Discussion 6 Conclusions and Future Work References Index