دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Balamurugan et al
سری:
ISBN (شابک) : 9781119654711
ناشر:
سال نشر: 2021
تعداد صفحات: 352
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Computation in BioInformatics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات در بیوانفورماتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface 1 Bioinfomatics as a Tool in Drug Designing 1.1 Introduction 1.2 Steps Involved in Drug Designing 1.2.1 Identification of the Target Protein/Enzyme 1.2.2 Detection of Molecular Site (Active Site) in the Target Protein 1.2.3 Molecular Modeling 1.2.4 Virtual Screening 1.2.5 Molecular Docking 1.2.6 QSAR (Quantitative Structure-Activity Relationship) 1.2.7 Pharmacophore Modeling 1.2.8 Solubility of Molecule 1.2.9 Molecular Dynamic Simulation 1.2.10 ADME Prediction 1.3 Various Softwares Used in the Steps of Drug Designing 1.4 Applications 1.5 Conclusion References 2 New Strategies in Drug Discovery 2.1 Introduction 2.2 Road Toward Advancement 2.3 Methodology 2.3.1 Target Identification 2.3.2 Docking-Based Virtual Screening 2.3.3 Conformation Sampling 2.3.4 Scoring Function 2.3.5 Molecular Similarity Methods 2.3.6 Virtual Library Construction 2.3.7 Sequence-Based Drug Design 2.4 Role of OMICS Technology 2.5 High-Throughput Screening and Its Tools 2.6 Chemoinformatic 2.6.1 Exploratory Data Analysis 2.6.2 Example Discovery 2.6.3 Pattern Explanation 2.6.4 New Technologies 2.7 Concluding Remarks and Future Prospects References 3 Role of Bioinformatics in Early Drug Discovery: An Overview and Perspective 3.1 Introduction 3.2 Bioinformatics and Drug Discovery 3.2.1 Structure-Based Drug Design (SBDD) 3.2.2 Ligand-Based Drug Design (LBDD) 3.3 Bioinformatics Tools in Early Drug Discovery 3.3.1 Possible Biological Activity Prediction Tools 3.3.2 Possible Physicochemical and Drug-Likeness Properties Verification Tools 3.3.3 Possible Toxicity and ADME/T Profile Prediction Tools 3.4 Future Directions With Bioinformatics Tool 3.5 Conclusion Acknowledgements References 4 Role of Data Mining in Bioinformatics 4.1 Introduction 4.2 Data Mining Methods/Techniques 4.2.1 Classification 4.2.1.1 Statistical Techniques 4.2.1.2 Clustering Technique 4.2.1.3 Visualization 4.2.1.4 Induction Decision Tree Technique 4.2.1.5 Neural Network 4.2.1.6 Association Rule Technique 4.2.1.7 Classification 4.3 DNA Data Analysis 4.4 RNA Data Analysis 4.5 Protein Data Analysis 4.6 Biomedical Data Analysis 4.7 Conclusion and Future Prospects References 5 In Silico Protein Design and Virtual Screening 5.1 Introduction 5.2 Virtual Screening Process 5.2.1 Before Virtual Screening 5.2.2 General Process of Virtual Screening 5.2.2.1 Step 1 (The Establishment of the Receptor Model) 5.2.2.2 Step 2 (The Generation of Small-Molecule Libraries) 5.2.2.3 Step 3 (Molecular Docking) 5.2.2.4 Step 4 (Selection of Lead Protein Compounds) 5.3 Machine Learning and Scoring Functions 5.4 Conclusion and Future Prospects References 6 New Bioinformatics Platform-Based Approach for Drug Design 6.1 Introduction 6.2 Platform-Based Approach and Regulatory Perspective 6.3 Bioinformatics Tools and Computer-Aided Drug Design 6.4 Target Identification 6.5 Target Validation 6.6 Lead Identification and Optimization 6.7 High-Throughput Methods (HTM) 6.8 Conclusion and Future Prospects References 7 Bioinformatics and Its Application Areas 7.1 Introduction 7.2 Review of Bioinformatics 7.3 Bioinformatics Applications in Different Areas 7.3.1 Microbial Genome Application 7.3.2 Molecular Medicine 7.3.3 Agriculture 7.4 Conclusion References 8 DNA Microarray Analysis: From Affymetrix CEL Files to Comparative Gene Expression 8.1 Introduction 8.2 Data Processing 8.2.1 Installation of Workflow 8.2.2 Importing the Raw Data for Processing 8.2.3 Retrieving Sample Annotation of the Data 8.2.4 Quality Control 8.3 Normalization of Microarray Data Using the RMA Method 8.3.1 Background Correction 8.3.2 Normalization 8.3.3 Summarization 8.4 Statistical Analysis for Differential Gene Expression 8.5 Conclusion References 9 Machine Learning in Bioinformatics 9.1 Introduction and Background 9.1.1 Bioinformatics 9.1.2 Text Mining 9.1.3 IoT Devices 9.2 Machine Learning Applications in Bioinformatics 9.3 Machine Learning Approaches 9.4 Conclusion and Closing Remarks References 10 DNA-RNA Barcoding and Gene Sequencing 10.1 Introduction 10.2 RNA 10.3 DNA Barcoding 10.3.1 Introduction 10.3.2 DNA Barcoding and Molecular Phylogeny 10.3.3 Ribosomal DNA (rDNA) of the Nuclear Genome (nuDNA)—ITS 10.3.4 Chloroplast DNA 10.3.5 Mitochondrial DNA 10.3.6 Molecular Phylogenetic Analysis 10.3.7 Metabarcoding 10.3.8 Materials for DNA Barcoding 10.4 Main Reasons of DNA Barcoding 10.5 Limitations/Restrictions of DNA Barcoding 10.6 RNA Barcoding 10.6.1 Overview of the Method 10.7 Methodology 10.7.1 Materials Required 10.7.2 Barcoded RNA Sequencing High-Level Mapping of Single-Neuron Projections 10.7.3 Using RNA to Trace Neurons 10.7.4 A Life Conservation Barcoder 10.7.5 Gene Sequencing 10.7.5.1 DNA Sequencing Methods 10.7.5.2 First-Generation Sequencing Techniques 10.7.5.3 Maxam’s and Gilbert’s Chemical Method 10.7.5.4 Sanger Sequencing 10.7.5.5 Automation in DNA Sequencing 10.7.5.6 Use of Fluorescent-Marked Primers and ddNTPs 10.7.5.7 Dye Terminator Sequencing 10.7.5.8 Using Capillary Electrophoresis 10.7.6 Developments and High-Throughput Methods in DNA Sequencing 10.7.7 Pyrosequencing Method 10.7.8 The Genome Sequencer 454 FLX System 10.7.9 Illumina/Solexa Genome Analyzer 10.7.10 Transition Sequencing Techniques 10.7.11 Ion-Torrent’s Semiconductor Sequencing 10.7.12 Helico’s Genetic Analysis Platform 10.7.13 Third-Generation Sequencing Techniques 10.8 Conclusion Abbreviations Acknowledgement References 11 Bioinformatics in Cancer Detection 11.1 Introduction 11.2 The Era of Bioinformatics in Cancer 11.3 Aid in Cancer Research via NCI 11.4 Application of Big Data in Developing Precision Medicine 11.5 Historical Perspective and Development 11.6 Bioinformatics-Based Approaches in the Study of Cancer 11.6.1 SLAMS 11.6.2 Module Maps 11.6.3 COPA 11.7 Conclusion and Future Challenges References 12 Genomic Association of Polycystic Ovarian Syndrome: Single-Nucleotide Polymorphisms and Their Role in Disease Progression 12.1 Introduction 12.2 FSHR Gene 12.3 IL-10 Gene 12.4 IRS-1 Gene 12.5 PCR Primers Used 12.6 Statistical Analysis 12.7 Conclusion References 13 An Insight of Protein Structure Predictions Using Homology Modeling 13.1 Introduction 13.2 Homology Modeling Approach 13.2.1 Strategies for Homology Modeling 13.2.2 Procedure 13.3 Steps Involved in Homology Modeling 13.3.1 Template Identification 13.3.2 Sequence Alignment 13.3.3 Backbone Generation 13.3.4 Loop Modeling 13.3.5 Side Chain Modeling 13.3.6 Model Optimization 13.3.6.1 Model Validation 13.4 Tools Used for Homology Modeling 13.4.1 Robetta 13.4.2 M4T (Multiple Templates) 13.4.3 I-Tasser (Iterative Implementation of the Threading Assembly Refinement) 13.4.4 ModBase 13.4.5 Swiss Model 13.4.6 PHYRE2 (Protein Homology/Analogy Recognition Engine 2) 13.4.7 Modeller 13.4.8 Conclusion Acknowledgement References 14 Basic Concepts in Proteomics and Applications 14.1 Introduction 14.2 Challenges on Proteomics 14.3 Proteomics Based on Gel 14.4 Non-Gel–Based Electrophoresis Method 14.5 Chromatography 14.6 Proteomics Based on Peptides 14.7 Stable Isotopic Labeling 14.8 Data Mining and Informatics 14.9 Applications of Proteomics 14.10 Future Scope 14.11 Conclusion References 15 Prospects of Covalent Approaches in Drug Discovery: An Overview 15.1 Introduction 15.2 Covalent Inhibitors Against the Biological Target 15.3 Application of Physical Chemistry Concepts in Drug Designing 15.4 Docking Methodologies—An Overview 15.5 Importance of Covalent Targets 15.6 Recent Framework on the Existing Docking Protocols 15.7 SN2 Reactions in the Computational Approaches 15.8 Other Crucial Factors to Consider in the Covalent Docking 15.8.1 Role of Ionizable Residues 15.8.2 Charge Regulation 15.8.3 Charge-Charge Interactions 15.9 QM/MM Approaches 15.10 Conclusion and Remarks Acknowledgements References Index Also of Interest Check out these published and forthcoming related titles from Scrivener Publishing EULA