دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Mahdi Khosravy (editor), Nilanjan Dey (editor), Carlos A. Duque (editor) سری: Advances in ubiquitous sensing applications for healthcare (Book 11) ISBN (شابک) : 0128212470, 9780128212479 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 304 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Compressive Sensing in Healthcare (Advances in ubiquitous sensing applications for healthcare) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سنجش فشاری در بهداشت و درمان (پیشرفت در کاربردهای سنجش همه جا برای مراقبت های بهداشتی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
حسگر فشاری در مراقبتهای بهداشتی، بخشی از مجموعه پیشرفتها در کاربردهای سنجش همهجا برای مراقبتهای بهداشتی به بررسی تکنیکهای سنجش فشاری به روشی عملی میپردازد، و همچنین سنجش فشار قطعی را ارائه میکند. تکنیک های قابل استفاده در این زمینه تمرکز کتاب بر کاربردهای مراقبت های بهداشتی برای این فناوری است. هم برای سازندگان این فناوری و هم برای کاربران نهایی این محصولات در نظر گرفته شده است. محتوا شامل استفاده از EEG و ECG، به علاوه سخت افزار و نرم افزار مورد نیاز برای پروژه های ساختمانی است. شبکه های ناحیه بدن و شبکه های حسگر بدن مورد بررسی قرار می گیرند.
Compressive Sensing in Healthcare, part of the Advances in Ubiquitous Sensing Applications for Healthcare series gives a review on compressive sensing techniques in a practical way, also presenting deterministic compressive sensing techniques that can be used in the field. The focus of the book is on healthcare applications for this technology. It is intended for both the creators of this technology and the end users of these products. The content includes the use of EEG and ECG, plus hardware and software requirements for building projects. Body area networks and body sensor networks are explored.
Contents List of contributors 1 Compressive sensing theoretical foundations in a nutshell 1.1 Introduction 1.2 Digital signal acquisition 1.3 Vectorial representation of signal l1 norm l2 norm l∞ norm Spheres made by different lp norms as distance criterion Basis/dictionary Orthonormal basis/dictionary Frame/ over-complete dictionary Alternate/dual frame 1.4 Sparsity k-sparse signal Non-linearity of sparsity Sparsity and compressibility 1.5 Compressive sensing Compressive sensing model 1.6 Essential properties of compressive sensing matrix 1.6.1 Null space property (NSP) The essence of the concept of recovery Maximum compression in compressive sensing (lower bound of m) 1.6.2 Restricted isometry property 1.6.3 Coherence a simple way to check NSP Relation between coherence and spark of a matrix Coherence approach to RIP 1.7 Summary 1.A Null space property of order 2k References 2 Recovery in compressive sensing: a review 2.1 Introduction 2.1.1 Compressive sensing formulation 2.2 Criteria required for a compressive sensing matrix 2.2.1 Null space property Null space property of order k 2.2.1.1 Uniqueness theorem [46] Maximum compression in compressive sensing 2.2.2 Restricted isometry property 2.2.3 Coherence property 2.2.3.1 Coherence and spark of a matrix 2.2.3.2 The upper bound of sparsity level 2.3 Recovery 2.3.1 Recovery via minimization of l1 norm 2.3.2 Greedy algorithms 2.3.2.1 Pursuits 2.3.2.2 Matching pursuit 2.3.2.3 Orthogonal matching pursuit 2.3.2.4 Iterative hard thresholding 2.4 Summary References 3 A descriptive review to sparsity measures 3.1 Introduction 3.2 Compressive sensing 3.3 Sparsity k-sparse signal 3.4 Review to sparsity measures Robin Hood: Dalton's first law Scaling: Dalton's second law Rising tide: Dalton's third law Cloning: Dalton's fourth law Bill Gates Babies Measure Sl0 Measure Sl0,ε Measure Stanha,b Measure Slog Measure Sl1 Measure Slp Measure Sl2/l1 The ratio of l2 distance to l1 distance from the center Measure κ4 Measure Suθ Measures HG, HS, H'S, and l-p Hoyer measure pq-mean measure Measure SGini 3.5 Summary References 4 Compressive sensing in practice and potential advancements 4.1 Introduction 4.2 Compressive sensing theory 4.3 Example compressive sensing implementations 4.3.1 Compressive sensing in physiological signal monitoring In the field application results 4.3.2 Compressive sensing in THEMIS imaging In-the-field application results 4.4 Review of CS literature 4.4.1 Practical manifestations of theoretical bounds 4.5 Advancements in compressive sensing 4.5.1 Personalized basis Challenges 4.5.2 Non-linear model-based compressive sensing Challenges 4.5.3 ROI aware compressive sensing Challenges 4.6 Conclusion Acknowledgments References 5 A review of deterministic sensing matrices 5.1 Introduction 5.2 Compressive sensing 5.3 Chirp codes compressive matrices 5.3.1 Φ for sparse spectrum signals 5.4 Second order Reed-Muller compressive sensing matrix 5.4.1 Fast reconstruction algorithm 5.5 Amini approach to RIP-satisfying matrices 5.6 Amini-Marvasti binary matrix 5.6.1 BCH-code 5.6.2 Extremal Set Theory 5.6.3 Unbalanced expander graphs 5.7 Sensing matrices with statistical restricted isometry property 5.8 Deterministic compressive matrix by algebraic curves over finite fields 5.9 Summary References 6 Deterministic compressive sensing by chirp codes: a descriptive tutorial 6.1 Introduction 6.2 The standard formulation compressive sensing 6.3 Compressive sensing by chirp codes 6.3.1 Building the compressive sensing matrix by chirp codes 6.3.2 Restricted isometry property for the chirp code compressive sensing 6.4 Recovery of chirp code compressively sensed signal 6.4.1 Step by step in one iteration of recovery 6.5 Summary 6.A 6.A.1 Chirp sinusoid References 7 Deterministic compressive sensing by chirp codes: a MATLAB® tutorial 7.1 Introduction 7.2 Compressive sensing 7.3 Chirp codes compressive sensing: MATLAB tutorial 7.3.1 Chirp codes 7.3.2 The approach for extraction of parameters 7.3.2.1 Single chirp 7.3.2.2 Mixture of two chirps 7.3.3 Bijection between the sets {ri} and {2riT mod K} 7.3.4 Dechirping yl 7.3.5 Sensing and recovery 7.4 Summary References 8 Cyber physical systems for healthcare applications using compressive sensing 8.1 Introduction 8.2 Related works 8.3 Proposed work 8.3.1 Image acquisition 8.3.2 Pre-processing techniques 8.3.3 Block division 8.3.4 Compressive sensing 8.3.5 Uploading data to cloud 8.3.6 GUI (graphical user interface) 8.4 Performance evaluation 8.4.1 Simulation results 8.4.2 Experimental results 8.5 Conclusion and scope for future work References 9 Compressive sensing of electrocardiogram 9.1 Introduction 9.2 Electrocardiogram 9.2.1 Historical background 9.2.2 Heart anatomy 9.2.3 Conduction system 9.2.4 Electrophysiology 9.2.5 Electrocardiogram acquisition 9.3 Compressive sensing 9.3.1 Compressive sensing signal acquisition 9.3.2 Compressive sensed signal reconstruction 9.3.2.1 Metrics 9.3.3 CS importance in tele-medicine 9.4 Compressive sensing approach to ECG 9.4.1 ECG signal quality 9.4.2 Body sensor networks and monitoring systems 9.4.3 Dictionary learning 9.4.4 ECG signal structure 9.4.5 Wavelets and compressive sensing 9.4.6 Signal compression 9.4.7 Reconstruction algorithms 9.4.8 Discrete wavelet transform (DWT) vs compressive sensing (CS) 9.4.9 Hardware implementation 9.5 Conclusion References 10 Multichannel ECG reconstruction based on joint compressed sensing for healthcare applications 10.1 Introduction 10.2 Background and related work 10.2.1 Compressed sensing-based MECG compression 10.2.1.1 Sensing matrix Gaussian random matrix Sparse binary matrix 10.2.2 Compressed sensing based MECG reconstruction 10.3 Proposed method 10.4 Results and discussion 10.4.1 Experimental setup 10.4.2 Performance metrics 10.4.3 Performance evaluation 10.4.4 Healthcare application perspective 10.4.5 Power saving 10.5 Conclusion References 11 Neural signal compressive sensing 11.1 Introduction 11.2 Compressed sensing theory - a brief review 11.3 Compressive sensing for energy-efficient neural recording 11.4 Compressive sensing in seizure detection 11.5 Compressive sensing in Alzheimer's disease 11.6 Compressive electroencephalography (EEG) sensor design 11.7 Compressive sensing in neural recording 11.8 Compressive sensing for fall prevention 11.9 EEG compressive sensing for person identification 11.10 Compressive sensing wireless neural recording 11.11 Compressive sensing in portable EEG systems 11.12 Compressed and distributed sensing of neuronal activity 11.13 Summary References 12 Level-crossing sampling: principles, circuits, and processing for healthcare applications 12.1 Introduction 12.2 Basics of level-crossing sampling 12.3 Design considerations in level-crossing sampling 12.3.1 Resolution 12.3.2 Dynamic range 12.3.3 Conversion delay 12.3.4 Timer resolution and number of bits 12.3.5 Accuracy of the converter 12.4 Level-crossing analog-to-digital converters 12.4.1 Floating-window LCADC 12.4.2 Fixed-window LCADCs 12.5 Processing of the level-crossing sampled data References 13 Compressive sensing of electroencephalogram: a review 13.1 Introduction 13.2 Signal acquisition 13.2.1 Pulse train sampling 13.2.2 Signal recovery 13.2.3 Nyquist frequency 13.2.4 Aliasing 13.2.5 Sample-hold 13.3 EEG signals 13.4 Compressive sensing 13.4.1 Compressive sensing metrics 13.5 Applications 13.5.1 Block sparse Bayesian learning 13.5.2 Bayesian compressive sensing 13.5.3 Slepian basis 13.5.4 Monitoring 13.5.5 Wireless body area network 13.5.6 Comparing reconstruction algorithms 13.5.7 Biometric identification 13.5.8 Dictionary learning 13.5.9 General applications 13.5.10 Hardware implementation 13.5.11 Feasibility of compressive sensing for EEG signals 13.6 Conclusion References 14 Calibrationless parallel compressed sensing reconstruction for rapid magnetic resonance imaging 14.1 Introduction 14.2 Background 14.3 Proposed method 14.4 Results and discussion 14.5 Conclusions Acknowledgment References Index