دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Volume 1. Fundamentals] نویسندگان: Gerard Parkin, Karsten Meyer, Dermot O’Hare سری: ISBN (شابک) : 9780128202067 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: [674] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 33 Mb
در صورت تبدیل فایل کتاب Comprehensive Organometallic Chemistry IV به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی آلی فلزی جامع IV نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شیمی آلی فلزی جامع، مجموعه نه جلدی منبع پیشرو در بازار است که تمام حوزههای این زیرشاخه مهم شیمی را پوشش میدهد. به 9 بخش شفاف تقسیم شده است و پوشش تخصصی سنتز، ساختارها، پیوند و واکنش پذیری همه ترکیبات آلی فلزی، از جمله مکانیسم واکنش ها را ارائه می دهد. سپس به کاربردهای شیمی آلی فلزی، مانند نقش این ترکیبات به عنوان معرف و کاتالیزور برای تبدیلهای آلی فلزی و مشارکت آنها در شیمی فلزات زیستی پرداخته میشود. این یک منطقه پر جنب و جوش است، همانطور که با این واقعیت نشان می دهد که جوایز نوبل در سال های 2001، 2005 و 2010 همگی به شیمی آلی فلزی مربوط می شوند. بنابراین، این نسخه جدید دوباره منبع یادگیری ارزشمند و کارآمدی را برای همه محققان و مربیانی که به دنبال تجزیه و تحلیل به روز از جنبه خاصی از شیمی آلی فلزی هستند، فراهم می کند. جامع - CHEC IV مروری جامع از تحقیقات هتروسیکل های فعلی و بینش انتقادی در جهت آینده این زمینه با تأکید بر ترکیب و واکنش های مفید و قابل اعتماد ارائه می دهد و نیاز به جستجوهای فردی در ادبیات اولیه و در پایگاه های مختلف را نفی می کند. ویرایش چهارم با شهرت چشمگیر نسخه های قبلی به عنوان مرجع اصلی در شیمی هتروسیکلیک مطابقت دارد. اطلاعات مرتبط را به سرعت و به راحتی بیابید میان رشته ای - فصل های نوشته شده توسط دانشگاهیان و متخصصان از زمینه ها و مناطق مختلف تضمین می کند که دانش درون به راحتی توسط مخاطبان زیادی قابل درک است و برای آنها قابل استفاده است.
Comprehensive Organometallic Chemistry, Nine Volume Set is the market-leading resource covering all areas of this critical sub-discipline of chemistry. Divided into 9 clear sections, it provides expert coverage of the synthesis, structures, bonding and reactivity of all organometallic compounds, including the mechanisms of the reactions. Applications of organometallic chemistry, such as the role of these compounds as reagents and catalysts for organometallic transformations, and their participation in bioorganometallic chemistry, is then covered. This is a vibrant area, as illustrated by the fact that the 2001, 2005 and 2010 Nobel prizes in Chemistry are all concerned with organometallic chemistry. This new edition will therefore again provide an invaluable and efficient learning resource for all researchers and educators looking for up-to-date analysis of a particular aspect of organometallic chemistry. Comprehensive - CHEC IV will offer a comprehensive review of current heterocycles research and critical insight into the future direction of the field with an emphasis on useful and reliable synthesis and reactions, negating the need for individual searches in the primary literature and across various databases Reputation - The 4th edition will match the impressive reputation of the previous editions as the go-to foundational reference in heterocyclic chemistry Clearly structured - Meticulously organized, articles are split into 9 sections on key topics and clearly cross-referenced to allow students, researchers and professionals to find relevant information quickly and easily Interdisciplinary - chapters written by academics and practitioners from various fields and regions will ensure that the knowledge within is easily understood by and applicable to a large audience
Cover Half Title Comprehensive Organometallic Chemistry IV. Volume 13: Applications II. d- and f-Block Metal Complexes in Organic Synthesis - Part 2 Copyright Contents of Volume 13 Editor Biographies Contributors to Volume 13 Preface 13.01 Phosphine Ligand Development for Homogeneous Asymmetric Hydrogenation 13.01.1. Introduction 13.01.2. Developing chiral phosphine ligands for olefin hydrogenation 13.01.2.1. Functionalized olefin hydrogenation with Rh based catalyst 13.01.2.1.1. History of developing chiral bisphosphine in Rh catalyst development 13.01.2.1.2. Empirical ligand design in Rh catalyst development-Quadrant rule 13.01.2.1.3. Empirical ligand design in Rh catalyst development-Backbone rigidity 13.01.2.1.4. Mechanistic studies of Rh-catalyzed hydrogenation of functionalized alkenes 13.01.2.2. Functionalized olefin hydrogenation with Ru-based catalysts 13.01.2.2.1. Developing BINAP for Rh-catalyzed olefin hydrogenation 13.01.2.2.2. BINAP in Ru-catalyzed olefin hydrogenation 13.01.2.3. Unfunctionalized olefin hydrogenation with Ir based catalyst 13.01.2.4. Olefin hydrogenation with Co based catalyst 13.01.2.5. Olefin hydrogenation with Ni based catalyst 13.01.3. Developing chiral phosphine ligands for ketone hydrogenation 13.01.3.1. Ketone hydrogenation with Ru based catalysts 13.01.3.1.1. Development of the BINAP-Ru catalyst for ketone hydrogenation 13.01.3.1.2. Developing multidentate ligands for Ru-catalyzed transfer hydrogenation 13.01.3.1.3. Developing pincer ligands for Ru-catalyzed ketone hydrogenation 13.01.3.2. Ketone hydrogenation with Ir based catalysts 13.01.3.3. Ketone hydrogenation with Fe based catalysts 13.01.3.3.1. Ketone transfer hydrogenation with Fe based catalysts 13.01.3.3.2. Ketone direct hydrogenation with Fe based catalyst 13.01.3.4. Ketone hydrogenation with Mn based catalysts 13.01.4. Conclusions and future directions References 13.02 Hydrometallation of Organometallic Complexes 13.02.1. Nickel 13.02.1.1. Ni-catalyzed hydrogenation 13.02.1.2. Ni-catalyzed hydrosilylation, hydroboration and hydroalumination 13.02.1.3. Ni-catalyzed hydrovinylation 13.02.1.4. Ni-catalyzed carbon-hydrogen functionalization 13.02.1.5. Ni-catalyzed hydrocarbonation 13.02.2. Copper 13.02.2.1. Cu-H catalyzed hydroamination 13.02.2.2. Cu-H catalyzed hydroalkylation 13.02.2.3. Cu-H catalyzed hydrosilylation and hydroboration 13.02.2.4. Cu-H catalyzed hydrocarbonylation 13.02.3. Cobalt 13.02.3.1. Co-catalyzed hydrosilylation 13.02.3.2. Co-catalyzed hydrogenation 13.02.3.3. Co-catalyzed isomerization of alkenes Acknowledgment References 13.03 Metal-Catalyzed Aerobic Oxidation Reactions 13.03.1. Introduction 13.03.2. Oxygenation reactions 13.03.2.1. Cobalt catalysts for oxygenation reactions 13.03.2.1.1. Alkane oxygenation 13.03.2.1.2. Phenol oxygenation 13.03.2.2. Copper catalysts for oxygenation reactions 13.03.2.2.1. Alkane oxygenation 13.03.2.2.2. Phenol oxygenation 13.03.2.3. Other catalysts for oxygenation reactions 13.03.2.3.1. Alkane oxygenation 13.03.2.3.2. Arene oxygenation 13.03.3. Dehydrogenation reactions 13.03.3.1. Palladium catalysts for dehydrogenation reactions 13.03.3.1.1. Basic mechanistic considerations 13.03.3.1.2. Alcohol oxidation 13.03.3.1.3. Amine oxidation 13.03.3.1.4. Alkane dehydrogenation 13.03.3.2. Copper catalysts for dehydrogenation reactions 13.03.3.2.1. Alcohol oxidation 13.03.3.2.2. Amine dehydrogenation 13.03.3.3. Other catalysts for dehydrogenation reactions 13.03.3.3.1. Alcohol oxidation 13.03.3.3.2. Amine oxidation 13.03.4. Dehydrogenative coupling reactions 13.03.4.1. Palladium catalysts for dehydrogenative coupling reactions 13.03.4.1.1. Oxidative couplings of alkenes 13.03.4.1.2. Oxidative couplings of arenes 13.03.4.1.3. Allylic functionalization 13.03.4.2. Copper catalysts for dehydrogenative coupling reactions 13.03.4.2.1. Oxidative coupling of arenes 13.03.4.2.2. Oxidative coupling of alkanes 13.03.4.3. Other catalysts for dehydrogenative coupling reactions 13.03.4.3.1. Alkene and alkyne oxidation and oxidative coupling 13.03.4.3.2. Arene coupling 13.03.5. Conclusions References 13.04 Metal-Mediated and Catalyzed Difunctionalization of Unsaturated Organics 13.04.1. Introduction 13.04.2. Dicarbofunctionalization 13.04.2.1. Overview 13.04.2.2. Dicarbofunctionalization of alkynes 13.04.2.3. Dicarbofunctionalization of allenes 13.04.2.4. Dicarbofunctionalization of 1,3-dienes 13.04.2.5. Dicarbofunctionalization of alkenes 13.04.3. Diamination 13.04.3.1. Overview 13.04.3.2. Diamination of alkenes 13.04.3.3. Diamination of 1,3-dienes 13.04.3.4. Diamination of alkynes 13.04.3.5. Diamination of allenes 13.04.4. Dioxygenation 13.04.4.1. Overview 13.04.4.2. Alkyne dioxygenation 13.04.4.3. Dioxygenation of allenes 13.04.4.4. Dioxygenation of 1,3-dienes 13.04.4.5. Dioxygenation of alkenes 13.04.4.5.1. Syn-dioxygenation of alkenes 13.04.4.5.2. Anti-dioxygenation of alkenes 13.04.5. Homo/heterodihalogenation reactions 13.04.5.1. Overview 13.04.5.2. Homo/heterodihalogenation of alkenes 13.04.5.3. Homo/heterodihalogenation of allenes 13.04.5.4. Homo/heterodihalogenation of alkynes 13.04.6. Aminooxygenation 13.04.6.1. Aminooxygenation of alkenes 13.04.6.1.1. Palladium-catalyzed 13.04.6.1.2. Rhodium-catalyzed 13.04.6.1.3. Copper-catalyzed 13.04.6.1.3.1. Radical mediated aminocyclization 13.04.6.1.3.2. Aziridine-based aminooxygenation 13.04.6.1.3.3. Intermolecular aminooxygenation 13.04.6.1.3.4. Oxycyclization 13.04.6.1.4. Platinum-catalyzed 13.04.6.1.5. Iron-catalyzed 13.04.6.1.6. Gold-catalyzed 13.04.6.1.7. Manganese-catalyzed 13.04.6.1.8. Iridium-catalyzed 13.04.6.2. Aminooxygenation of alkynes 13.04.6.2.1. Ruthenium-catalyzed 13.04.6.2.2. Gold-catalyzed 13.04.6.2.3. Copper-catalyzed 13.04.6.2.4. Iron-catalyzed 13.04.6.3. Aminooxygenation of allenes 13.04.6.3.1. Rhodium-catalyzed 13.04.6.3.2. Copper-mediated 13.04.7. Carboamination 13.04.7.1. Carboamination of alkynes 13.04.7.2. Carboamination of allenes 13.04.7.3. Carboamination of 1,3-butadienes 13.04.7.4. Carboamination of alkenes 13.04.8. Carbohalogenation 13.04.8.1. Carbohalogenation via reductive elimination from Pd(II) 13.04.8.2. Carbohalogenation via reductive elimination from high valent metals 13.04.8.3. Carbohalogenation via nickel catalysis 13.04.9. Aminohalogenation 13.04.9.1. Aminohalogenation via palladium catalysis 13.04.9.2. Iron-catalyzed aminohalogenation 13.04.9.3. Aminohalogenation via gold catalysis 13.04.9.4. Aminohalogenation via high-valent copper catalysis 13.04.10. Oxyhalogenation 13.04.11. Carbooxygenation 13.04.11.1. Palladium-catalyzed 13.04.11.2. Gold-catalyzed 13.04.12. Conclusion and outlook Acknowledgment References 13.05 Hydroformylation: Alternatives to Rh and Syn-gas 13.05.1. Introduction 13.05.2. Monometallic hydroformylation with syn-gas 13.05.2.1. Brief introduction of rhodium catalysts 13.05.2.2. Alternative metal catalysts 13.05.2.2.1. Cobalt catalysts 13.05.2.2.2. Ruthenium catalysts 13.05.2.2.3. Iron catalysts 13.05.3. Metal catalyzed hydroformylation with syn-gas surrogates 13.05.3.1. Carbon dioxide 13.05.3.2. Alcohol 13.05.3.3. Aldehyde 13.05.3.3.1. Formaldehyde 13.05.3.3.2. Transfer hydroformylation 13.05.3.4. Formic acid 13.05.4. Bimetallic hydroformylation 13.05.5. Asymmetric hydroformylation 13.05.6. Applications of hydroformylation 13.05.6.1. Tandem hydroformylation 13.05.6.2. Hydroformylation in natural product synthesis 13.05.6.3. Heterogeneous hydroformylation 13.05.6.3.1. Inorganic oxides 13.05.6.3.2. Transition metal modified zeolite catalyst system 13.05.6.3.3. Single atom catalysts for hydroformylation 13.05.7. Summary References 13.06 Reactions of Ylides Generated from M═C Bonds 13.06.1. Introduction 13.06.2. Formation of oxygen ylide from metal carbene complexes and subsequent reactions 13.06.2.1. [2,3]-Sigmatropic rearrangements 13.06.2.2. [1,2]-Stevens rearrangement 13.06.2.3. Trapping of the oxonium ylide 13.06.2.4. Miscellaneous reactions of oxonium ylides 13.06.2.5. 1,3-Dipolar cycloaddition of carbonyl ylide 13.06.3. Formation of sulfur ylide from metal carbene complexes and subsequent reactions 13.06.3.1. [2,3]-Sigmatropic rearrangements 13.06.3.2. [1,2]-Stevens rearrangement 13.06.3.3. S-H insertion 13.06.3.4. Trapping of the sulfonium ylide 13.06.3.4.1. Electrophilic trapping of the sulfonium ylide 13.06.3.4.2. Nucleophilic trapping of the sulfonium ylide 13.06.3.4.3. Miscellaneous applications of sulfonium ylides 13.06.3.5. 1,3-Dipolar cycloadditions of thiocarbonyl ylide 13.06.4. Formation of nitrogen ylide from metal carbene complexes and subsequent reactions 13.06.4.1. [2,3]-Sigmatropic rearrangements 13.06.4.2. [1,2]-Stevens rearrangement 13.06.4.3. Formal N-H insertions through ammonium ylide 13.06.4.4. Trapping of the ammonium ylide 13.06.4.5. The reaction of azirinium ylide and pyrazolium ylide 13.06.4.6. 1,3-Dipolar cycloadditions of azomethine and pyridinium ylide 13.06.5. Ylide generation from other heteroatoms and subsequent reactions 13.06.6. Reaction of metal complexed nitrene with Lewis base 13.06.7. Conclusion References 13.07 E vs Z Selectivity in Olefin Metathesis Through Catalyst Design 13.07.1. Introduction 13.07.1.1. Olefin metathesis 13.07.1.2. Alkene stereoselectivity in olefin metathesis 13.07.2. Catalyst design 13.07.2.1. Mo and W catalysts 13.07.2.1.1. Early studies with Mo bisalkoxide complexes 13.07.2.1.2. Early studies with Mo diolate catalysts 13.07.2.1.3. Mo and W monoaryloxide pyrrolide (MAP) complexes 13.07.2.1.3.1. Catalyst design and mechanism 13.07.2.1.3.2. Molybdacyclobutane and tungstacyclobutane MAP complexes 13.07.2.1.3.3. W oxo MAP catalysts 13.07.2.1.3.4. Cross metathesis with Mo and W MAP catalysts 13.07.2.1.3.5. Z-selective macrocyclic ring-closing metathesis 13.07.2.1.3.6. Ethenolysis catalyzed by Mo and W MAP catalysts 13.07.2.1.3.7. Ring-opening cross metathesis 13.07.2.1.3.8. Tacticity and E/Z-stereoselectivity in ROMP with MAP catalysts 13.07.2.1.4. Stereoretentive Mo catalysts 13.07.2.1.5. Mo and W NHC Imido Alkylidenes 13.07.2.2. Ru catalysts 13.07.2.2.1. Early discovery: cis selectivity in alternating copolymerization 13.07.2.2.2. Cyclometalated Z-selective Ru catalysts 13.07.2.2.2.1. Catalyst structure and mechanism 13.07.2.2.2.2. Cross metathesis with Z-selective cyclometalated Ru catalysts 13.07.2.2.2.3. Ethenolysis with Z-selective cyclometalated Ru catalysts 13.07.2.2.2.4. Ring-closing metathesis with Z-selective cyclometalated Ru catalysts 13.07.2.2.2.5. Ring-opening cross metathesis with Z-selective cyclometalated Ru catalysts 13.07.2.2.2.6. Ring-opening metathesis polymerization with Z-selective cyclometalated Ru catalysts 13.07.2.2.3. Monothiolate catalysts 13.07.2.2.4. Stereoretentive dithiolate catalysts 13.07.2.2.4.1. Initial catalyst design and structural modifications 13.07.2.2.4.2. Mechanism and stereoretention 13.07.2.2.4.3. E selectivity 13.07.2.2.4.4. Methylene capping strategy 13.07.2.2.4.5. Stereoretentive ring-opening metathesis polymerization 13.07.3. Summary Acknowledgment References 13.08 Single-Electron Strategies in Organometallic Methods: Photoredox, Electrocatalysis, Radical Relay, and Beyond 13.08.1. Introduction 13.08.2. Single-electron strategy by photoredox catalysis 13.08.2.1. Photoredox palladium catalysis 13.08.2.2. Photoredox copper catalysis 13.08.2.3. Photoredox nickel catalysis 13.08.2.4. Photoredox catalysis with other metals 13.08.3. Single-electron strategy by electrocatalysis 13.08.3.1. Electrochemical manganese catalysis 13.08.3.2. Electrochemical copper catalysis 13.08.3.3. Electrochemical nickel catalysis 13.08.3.4. Electrochemical cobalt catalysis 13.08.4. Radical relay in metal catalysis 13.08.4.1. Net-oxidizing reaction 13.08.4.2. Net-reducing reaction 13.08.4.3. Redox-neutral reaction 13.08.5. Oxidatively induced reductive elimination 13.08.6. Conclusion and perspective References 13.09 Transition Metal-Catalyzed Copolymerization of Olefins With Polar Functional Monomers 13.09.1. Introduction 13.09.2. Mechanism and ``polar monomer problem´´ for transition-metal-catalyzed olefin copolymerization 13.09.3. Early transition metal-catalyzed copolymerization of ethylene with polar monomers 13.09.3.1. Rare-earth catalysts 13.09.3.2. Group IV catalysts 13.09.4. Late transition metal catalyzed copolymerization of ethylene with polar functionalized olefins 13.09.4.1. α-Diimine catalysts (Brookhart-type) 13.09.4.2. Phosphine-sulfonate catalysts (Drent-type) 13.09.4.3. Catalysts beyond Brookhart and Drent systems 13.09.5. Transition metal catalyzed-copolymerization of propylene with polar monomers 13.09.5.1. Group IV catalysts 13.09.5.2. Ni and Pd catalysts 13.09.6. Copolymerization of other alkenes (styrene, dienes) with polar monomers 13.09.7. Conclusions References 13.10 Polymerization of Epoxides 13.10.1. Introduction 13.10.2. Homopolymerization of epoxides 13.10.2.1. Mechanistic aspects 13.10.2.1.1. Ionic polymerizations 13.10.2.1.1.1. Cationic initiators 13.10.2.1.1.2. Anionic initiators 13.10.2.2. Catalysts for epoxide polymerization 13.10.3. Alternating copolymerization of epoxides and carbon monoxide 13.10.3.1. Catalysts for the coupling of epoxides and CO to poly(3-hydroxyalkanoate)s 13.10.3.2. Mechanistic aspects of epoxide/CO polymerization reactions 13.10.4. Alternating copolymerization of epoxides and carbon dioxide 13.10.4.1. Mechanistic aspects of CO2/epoxide copolymerization processes 13.10.4.2. Improvement in catalysts 13.10.4.2.1. Mono-metallic catalysts 13.10.4.2.2. Bimetallic catalysts 13.10.4.2.3. Organocatalysts 13.10.5. Block copolymers of epoxides/CO2 and other monomers 13.10.5.1. Sequential monomer addition 13.10.5.2. Chain-transfer polymerization 13.10.5.3. Kinetic controlled polymerization 13.10.6. Alternating copolymerization of epoxides and anhydrides 13.10.7. Alternating copolymerization of epoxides and COS or CS2 13.10.7.1. Epoxides and CS2 13.10.7.2. Epoxide and COS 13.10.8. Conclusions and outlook References 13.11 Reaction Parameterization as a Tool for Development in Organometallic Catalysis 13.11.1. Introduction 13.11.2. Conventional ligand classification 13.11.3. Quantifying ligand electronic properties 13.11.3.1. Tolman electronic parameter (TEP) 13.11.3.2. Ligand electrochemical parameter (LEP) 13.11.3.3. Computed electronic parameter (CEP), molecular electrostatic potential (MESP) and metal-ligand electronic para ... 13.11.3.4. Huynh electronic parameter (HEP) 13.11.3.5. NMR spectroscopy of selenoureas or carbene-phosphinidene adducts and 1J(C-H) coupling constants of azolium salts 13.11.4. Descriptors for ligand steric properties 13.11.4.1. Tolman cone angle and the bite angle 13.11.4.2. Percent buried volume 13.11.4.3. Topographic steric maps 13.11.5. Analysis of catalyst performance based on parameterization of ancillary ligands 13.11.5.1. Catalytic trends of transition metal complexes bearing monodentate phosphines 13.11.5.2. Parameterization of transition metal complexes bearing monodentate phosphines 13.11.5.3. Catalytic trends of transition metal complexes bearing diphosphines 13.11.5.4. Parameterization of transition metal complexes bearing diphosphines 13.11.5.5. Catalytic trends of transition metal complexes bearing NHC ligands 13.11.5.6. Catalytic trends of transition metal complexes bearing other ligands 13.11.5.7. Parameterization of transition metal complexes bearing other ligands Acknowledgment References 13.12 High-Throughput Experimentation in Organometallic Chemistry and Catalysis 13.12.1. Introduction 13.12.1.1. Purpose and scope of this chapter 13.12.1.2. Additional reviews and resources 13.12.2. Tools and techniques 13.12.2.1. Experimental design 13.12.2.2. Array set up and dispensing 13.12.2.3. Reaction execution 13.12.2.4. High-throughput analysis 13.12.2.5. Data interrogation 13.12.3. Specific applications in catalysis 13.12.3.1. CH bond formation: Asymmetric hydrogenation 13.12.3.2. CC bond formation: Suzuki-Miyaura cross-coupling 13.12.3.3. CC bond formation: Negishi and Kumada-Corriu couplings 13.12.3.4. CC bond formation: Cross-electrophile couplings 13.12.3.5. CC bond formation: Mizoroki-Heck coupling 13.12.3.6. CC bond formation: Sonogashira coupling 13.12.3.7. CC bond formation: C-H arylation 13.12.3.8. CC bond formation: Allylation 13.12.3.9. CC bond formation: Carbonylative coupling 13.12.3.10. CC bond formation: Alkene metathesis 13.12.3.11. CC bond formation: Alkene polymerization and selective oligomerization 13.12.3.12. CC bond formation: Other reactions 13.12.3.13. CN bond formation: Buchwald-Hartwig and Ullmann-Goldberg coupling 13.12.3.14. CN bond formation: Chan-Lam and other oxidative couplings 13.12.3.15. CN bond formation: Hydroamination 13.12.3.16. CN bond formation: Other reactions 13.12.3.17. CO bond formation: Hydroxylation/etherification 13.12.3.18. CO bond formation: Other reactions 13.12.3.19. CB bond formation: Miyaura borylation 13.12.3.20. CB bond formation: C-H borylation 13.12.3.21. Other reactions 13.12.4. Conclusions and future trends Acknowledgment References Cover back