ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Comprehensive Organometallic Chemistry IV

دانلود کتاب شیمی آلی فلزی جامع IV

Comprehensive Organometallic Chemistry IV

مشخصات کتاب

Comprehensive Organometallic Chemistry IV

ویرایش: [Volume 1. Fundamentals] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9780128202067 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: [674] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 33 Mb 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Comprehensive Organometallic Chemistry IV به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی آلی فلزی جامع IV نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب شیمی آلی فلزی جامع IV

شیمی آلی فلزی جامع، مجموعه نه جلدی منبع پیشرو در بازار است که تمام حوزه‌های این زیرشاخه مهم شیمی را پوشش می‌دهد. به 9 بخش شفاف تقسیم شده است و پوشش تخصصی سنتز، ساختارها، پیوند و واکنش پذیری همه ترکیبات آلی فلزی، از جمله مکانیسم واکنش ها را ارائه می دهد. سپس به کاربردهای شیمی آلی فلزی، مانند نقش این ترکیبات به عنوان معرف و کاتالیزور برای تبدیل‌های آلی فلزی و مشارکت آنها در شیمی فلزات زیستی پرداخته می‌شود. این یک منطقه پر جنب و جوش است، همانطور که با این واقعیت نشان می دهد که جوایز نوبل در سال های 2001، 2005 و 2010 همگی به شیمی آلی فلزی مربوط می شوند. بنابراین، این نسخه جدید دوباره منبع یادگیری ارزشمند و کارآمدی را برای همه محققان و مربیانی که به دنبال تجزیه و تحلیل به روز از جنبه خاصی از شیمی آلی فلزی هستند، فراهم می کند. جامع - CHEC IV مروری جامع از تحقیقات هتروسیکل های فعلی و بینش انتقادی در جهت آینده این زمینه با تأکید بر ترکیب و واکنش های مفید و قابل اعتماد ارائه می دهد و نیاز به جستجوهای فردی در ادبیات اولیه و در پایگاه های مختلف را نفی می کند. ویرایش چهارم با شهرت چشمگیر نسخه های قبلی به عنوان مرجع اصلی در شیمی هتروسیکلیک مطابقت دارد. اطلاعات مرتبط را به سرعت و به راحتی بیابید میان رشته ای - فصل های نوشته شده توسط دانشگاهیان و متخصصان از زمینه ها و مناطق مختلف تضمین می کند که دانش درون به راحتی توسط مخاطبان زیادی قابل درک است و برای آنها قابل استفاده است.


توضیحاتی درمورد کتاب به خارجی

Comprehensive Organometallic Chemistry, Nine Volume Set is the market-leading resource covering all areas of this critical sub-discipline of chemistry. Divided into 9 clear sections, it provides expert coverage of the synthesis, structures, bonding and reactivity of all organometallic compounds, including the mechanisms of the reactions. Applications of organometallic chemistry, such as the role of these compounds as reagents and catalysts for organometallic transformations, and their participation in bioorganometallic chemistry, is then covered. This is a vibrant area, as illustrated by the fact that the 2001, 2005 and 2010 Nobel prizes in Chemistry are all concerned with organometallic chemistry. This new edition will therefore again provide an invaluable and efficient learning resource for all researchers and educators looking for up-to-date analysis of a particular aspect of organometallic chemistry. Comprehensive - CHEC IV will offer a comprehensive review of current heterocycles research and critical insight into the future direction of the field with an emphasis on useful and reliable synthesis and reactions, negating the need for individual searches in the primary literature and across various databases Reputation - The 4th edition will match the impressive reputation of the previous editions as the go-to foundational reference in heterocyclic chemistry Clearly structured - Meticulously organized, articles are split into 9 sections on key topics and clearly cross-referenced to allow students, researchers and professionals to find relevant information quickly and easily Interdisciplinary - chapters written by academics and practitioners from various fields and regions will ensure that the knowledge within is easily understood by and applicable to a large audience



فهرست مطالب

Cover
Half Title
Comprehensive Organometallic Chemistry IV. Volume 13: Applications II. d- and f-Block Metal Complexes in Organic Synthesis - Part 2
Copyright
Contents of Volume 13
Editor Biographies
Contributors to Volume 13
Preface
13.01 Phosphine Ligand Development for Homogeneous Asymmetric Hydrogenation
	13.01.1. Introduction
	13.01.2. Developing chiral phosphine ligands for olefin hydrogenation
		13.01.2.1. Functionalized olefin hydrogenation with Rh based catalyst
			13.01.2.1.1. History of developing chiral bisphosphine in Rh catalyst development
			13.01.2.1.2. Empirical ligand design in Rh catalyst development-Quadrant rule
			13.01.2.1.3. Empirical ligand design in Rh catalyst development-Backbone rigidity
			13.01.2.1.4. Mechanistic studies of Rh-catalyzed hydrogenation of functionalized alkenes
		13.01.2.2. Functionalized olefin hydrogenation with Ru-based catalysts
			13.01.2.2.1. Developing BINAP for Rh-catalyzed olefin hydrogenation
			13.01.2.2.2. BINAP in Ru-catalyzed olefin hydrogenation
		13.01.2.3. Unfunctionalized olefin hydrogenation with Ir based catalyst
		13.01.2.4. Olefin hydrogenation with Co based catalyst
		13.01.2.5. Olefin hydrogenation with Ni based catalyst
	13.01.3. Developing chiral phosphine ligands for ketone hydrogenation
		13.01.3.1. Ketone hydrogenation with Ru based catalysts
			13.01.3.1.1. Development of the BINAP-Ru catalyst for ketone hydrogenation
			13.01.3.1.2. Developing multidentate ligands for Ru-catalyzed transfer hydrogenation
			13.01.3.1.3. Developing pincer ligands for Ru-catalyzed ketone hydrogenation
		13.01.3.2. Ketone hydrogenation with Ir based catalysts
		13.01.3.3. Ketone hydrogenation with Fe based catalysts
			13.01.3.3.1. Ketone transfer hydrogenation with Fe based catalysts
			13.01.3.3.2. Ketone direct hydrogenation with Fe based catalyst
		13.01.3.4. Ketone hydrogenation with Mn based catalysts
	13.01.4. Conclusions and future directions
	References
13.02 Hydrometallation of Organometallic Complexes
	13.02.1. Nickel
		13.02.1.1. Ni-catalyzed hydrogenation
		13.02.1.2. Ni-catalyzed hydrosilylation, hydroboration and hydroalumination
		13.02.1.3. Ni-catalyzed hydrovinylation
		13.02.1.4. Ni-catalyzed carbon-hydrogen functionalization
		13.02.1.5. Ni-catalyzed hydrocarbonation
	13.02.2. Copper
		13.02.2.1. Cu-H catalyzed hydroamination
		13.02.2.2. Cu-H catalyzed hydroalkylation
		13.02.2.3. Cu-H catalyzed hydrosilylation and hydroboration
		13.02.2.4. Cu-H catalyzed hydrocarbonylation
	13.02.3. Cobalt
		13.02.3.1. Co-catalyzed hydrosilylation
		13.02.3.2. Co-catalyzed hydrogenation
		13.02.3.3. Co-catalyzed isomerization of alkenes
	Acknowledgment
	References
13.03 Metal-Catalyzed Aerobic Oxidation Reactions
	13.03.1. Introduction
	13.03.2. Oxygenation reactions
		13.03.2.1. Cobalt catalysts for oxygenation reactions
			13.03.2.1.1. Alkane oxygenation
			13.03.2.1.2. Phenol oxygenation
		13.03.2.2. Copper catalysts for oxygenation reactions
			13.03.2.2.1. Alkane oxygenation
			13.03.2.2.2. Phenol oxygenation
		13.03.2.3. Other catalysts for oxygenation reactions
			13.03.2.3.1. Alkane oxygenation
			13.03.2.3.2. Arene oxygenation
	13.03.3. Dehydrogenation reactions
		13.03.3.1. Palladium catalysts for dehydrogenation reactions
			13.03.3.1.1. Basic mechanistic considerations
			13.03.3.1.2. Alcohol oxidation
			13.03.3.1.3. Amine oxidation
			13.03.3.1.4. Alkane dehydrogenation
		13.03.3.2. Copper catalysts for dehydrogenation reactions
			13.03.3.2.1. Alcohol oxidation
			13.03.3.2.2. Amine dehydrogenation
		13.03.3.3. Other catalysts for dehydrogenation reactions
			13.03.3.3.1. Alcohol oxidation
			13.03.3.3.2. Amine oxidation
	13.03.4. Dehydrogenative coupling reactions
		13.03.4.1. Palladium catalysts for dehydrogenative coupling reactions
			13.03.4.1.1. Oxidative couplings of alkenes
			13.03.4.1.2. Oxidative couplings of arenes
			13.03.4.1.3. Allylic functionalization
		13.03.4.2. Copper catalysts for dehydrogenative coupling reactions
			13.03.4.2.1. Oxidative coupling of arenes
			13.03.4.2.2. Oxidative coupling of alkanes
		13.03.4.3. Other catalysts for dehydrogenative coupling reactions
			13.03.4.3.1. Alkene and alkyne oxidation and oxidative coupling
			13.03.4.3.2. Arene coupling
	13.03.5. Conclusions
	References
13.04 Metal-Mediated and Catalyzed Difunctionalization of Unsaturated Organics
	13.04.1. Introduction
	13.04.2. Dicarbofunctionalization
		13.04.2.1. Overview
		13.04.2.2. Dicarbofunctionalization of alkynes
		13.04.2.3. Dicarbofunctionalization of allenes
		13.04.2.4. Dicarbofunctionalization of 1,3-dienes
		13.04.2.5. Dicarbofunctionalization of alkenes
	13.04.3. Diamination
		13.04.3.1. Overview
		13.04.3.2. Diamination of alkenes
		13.04.3.3. Diamination of 1,3-dienes
		13.04.3.4. Diamination of alkynes
		13.04.3.5. Diamination of allenes
	13.04.4. Dioxygenation
		13.04.4.1. Overview
		13.04.4.2. Alkyne dioxygenation
		13.04.4.3. Dioxygenation of allenes
		13.04.4.4. Dioxygenation of 1,3-dienes
		13.04.4.5. Dioxygenation of alkenes
			13.04.4.5.1. Syn-dioxygenation of alkenes
			13.04.4.5.2. Anti-dioxygenation of alkenes
	13.04.5. Homo/heterodihalogenation reactions
		13.04.5.1. Overview
		13.04.5.2. Homo/heterodihalogenation of alkenes
		13.04.5.3. Homo/heterodihalogenation of allenes
		13.04.5.4. Homo/heterodihalogenation of alkynes
	13.04.6. Aminooxygenation
		13.04.6.1. Aminooxygenation of alkenes
			13.04.6.1.1. Palladium-catalyzed
			13.04.6.1.2. Rhodium-catalyzed
			13.04.6.1.3. Copper-catalyzed
				13.04.6.1.3.1. Radical mediated aminocyclization
				13.04.6.1.3.2. Aziridine-based aminooxygenation
				13.04.6.1.3.3. Intermolecular aminooxygenation
				13.04.6.1.3.4. Oxycyclization
			13.04.6.1.4. Platinum-catalyzed
			13.04.6.1.5. Iron-catalyzed
			13.04.6.1.6. Gold-catalyzed
			13.04.6.1.7. Manganese-catalyzed
			13.04.6.1.8. Iridium-catalyzed
		13.04.6.2. Aminooxygenation of alkynes
			13.04.6.2.1. Ruthenium-catalyzed
			13.04.6.2.2. Gold-catalyzed
			13.04.6.2.3. Copper-catalyzed
			13.04.6.2.4. Iron-catalyzed
		13.04.6.3. Aminooxygenation of allenes
			13.04.6.3.1. Rhodium-catalyzed
			13.04.6.3.2. Copper-mediated
	13.04.7. Carboamination
		13.04.7.1. Carboamination of alkynes
		13.04.7.2. Carboamination of allenes
		13.04.7.3. Carboamination of 1,3-butadienes
		13.04.7.4. Carboamination of alkenes
	13.04.8. Carbohalogenation
		13.04.8.1. Carbohalogenation via reductive elimination from Pd(II)
		13.04.8.2. Carbohalogenation via reductive elimination from high valent metals
		13.04.8.3. Carbohalogenation via nickel catalysis
	13.04.9. Aminohalogenation
		13.04.9.1. Aminohalogenation via palladium catalysis
		13.04.9.2. Iron-catalyzed aminohalogenation
		13.04.9.3. Aminohalogenation via gold catalysis
		13.04.9.4. Aminohalogenation via high-valent copper catalysis
	13.04.10. Oxyhalogenation
	13.04.11. Carbooxygenation
		13.04.11.1. Palladium-catalyzed
		13.04.11.2. Gold-catalyzed
	13.04.12. Conclusion and outlook
	Acknowledgment
	References
13.05 Hydroformylation: Alternatives to Rh and Syn-gas
	13.05.1. Introduction
	13.05.2. Monometallic hydroformylation with syn-gas
		13.05.2.1. Brief introduction of rhodium catalysts
		13.05.2.2. Alternative metal catalysts
			13.05.2.2.1. Cobalt catalysts
			13.05.2.2.2. Ruthenium catalysts
			13.05.2.2.3. Iron catalysts
	13.05.3. Metal catalyzed hydroformylation with syn-gas surrogates
		13.05.3.1. Carbon dioxide
		13.05.3.2. Alcohol
		13.05.3.3. Aldehyde
			13.05.3.3.1. Formaldehyde
			13.05.3.3.2. Transfer hydroformylation
		13.05.3.4. Formic acid
	13.05.4. Bimetallic hydroformylation
	13.05.5. Asymmetric hydroformylation
	13.05.6. Applications of hydroformylation
		13.05.6.1. Tandem hydroformylation
		13.05.6.2. Hydroformylation in natural product synthesis
		13.05.6.3. Heterogeneous hydroformylation
			13.05.6.3.1. Inorganic oxides
			13.05.6.3.2. Transition metal modified zeolite catalyst system
			13.05.6.3.3. Single atom catalysts for hydroformylation
	13.05.7. Summary
	References
13.06 Reactions of Ylides Generated from M═C Bonds
	13.06.1. Introduction
	13.06.2. Formation of oxygen ylide from metal carbene complexes and subsequent reactions
		13.06.2.1. [2,3]-Sigmatropic rearrangements
		13.06.2.2. [1,2]-Stevens rearrangement
		13.06.2.3. Trapping of the oxonium ylide
		13.06.2.4. Miscellaneous reactions of oxonium ylides
		13.06.2.5. 1,3-Dipolar cycloaddition of carbonyl ylide
	13.06.3. Formation of sulfur ylide from metal carbene complexes and subsequent reactions
		13.06.3.1. [2,3]-Sigmatropic rearrangements
		13.06.3.2. [1,2]-Stevens rearrangement
		13.06.3.3. S-H insertion
		13.06.3.4. Trapping of the sulfonium ylide
			13.06.3.4.1. Electrophilic trapping of the sulfonium ylide
			13.06.3.4.2. Nucleophilic trapping of the sulfonium ylide
			13.06.3.4.3. Miscellaneous applications of sulfonium ylides
		13.06.3.5. 1,3-Dipolar cycloadditions of thiocarbonyl ylide
	13.06.4. Formation of nitrogen ylide from metal carbene complexes and subsequent reactions
		13.06.4.1. [2,3]-Sigmatropic rearrangements
		13.06.4.2. [1,2]-Stevens rearrangement
		13.06.4.3. Formal N-H insertions through ammonium ylide
		13.06.4.4. Trapping of the ammonium ylide
		13.06.4.5. The reaction of azirinium ylide and pyrazolium ylide
		13.06.4.6. 1,3-Dipolar cycloadditions of azomethine and pyridinium ylide
	13.06.5. Ylide generation from other heteroatoms and subsequent reactions
	13.06.6. Reaction of metal complexed nitrene with Lewis base
	13.06.7. Conclusion
	References
13.07 E vs Z Selectivity in Olefin Metathesis Through Catalyst Design
	13.07.1. Introduction
		13.07.1.1. Olefin metathesis
		13.07.1.2. Alkene stereoselectivity in olefin metathesis
	13.07.2. Catalyst design
		13.07.2.1. Mo and W catalysts
			13.07.2.1.1. Early studies with Mo bisalkoxide complexes
			13.07.2.1.2. Early studies with Mo diolate catalysts
			13.07.2.1.3. Mo and W monoaryloxide pyrrolide (MAP) complexes
				13.07.2.1.3.1. Catalyst design and mechanism
				13.07.2.1.3.2. Molybdacyclobutane and tungstacyclobutane MAP complexes
				13.07.2.1.3.3. W oxo MAP catalysts
				13.07.2.1.3.4. Cross metathesis with Mo and W MAP catalysts
				13.07.2.1.3.5. Z-selective macrocyclic ring-closing metathesis
				13.07.2.1.3.6. Ethenolysis catalyzed by Mo and W MAP catalysts
				13.07.2.1.3.7. Ring-opening cross metathesis
				13.07.2.1.3.8. Tacticity and E/Z-stereoselectivity in ROMP with MAP catalysts
			13.07.2.1.4. Stereoretentive Mo catalysts
			13.07.2.1.5. Mo and W NHC Imido Alkylidenes
		13.07.2.2. Ru catalysts
			13.07.2.2.1. Early discovery: cis selectivity in alternating copolymerization
			13.07.2.2.2. Cyclometalated Z-selective Ru catalysts
				13.07.2.2.2.1. Catalyst structure and mechanism
				13.07.2.2.2.2. Cross metathesis with Z-selective cyclometalated Ru catalysts
				13.07.2.2.2.3. Ethenolysis with Z-selective cyclometalated Ru catalysts
				13.07.2.2.2.4. Ring-closing metathesis with Z-selective cyclometalated Ru catalysts
				13.07.2.2.2.5. Ring-opening cross metathesis with Z-selective cyclometalated Ru catalysts
				13.07.2.2.2.6. Ring-opening metathesis polymerization with Z-selective cyclometalated Ru catalysts
			13.07.2.2.3. Monothiolate catalysts
			13.07.2.2.4. Stereoretentive dithiolate catalysts
				13.07.2.2.4.1. Initial catalyst design and structural modifications
				13.07.2.2.4.2. Mechanism and stereoretention
				13.07.2.2.4.3. E selectivity
				13.07.2.2.4.4. Methylene capping strategy
				13.07.2.2.4.5. Stereoretentive ring-opening metathesis polymerization
	13.07.3. Summary
	Acknowledgment
	References
13.08 Single-Electron Strategies in Organometallic Methods: Photoredox, Electrocatalysis, Radical Relay, and Beyond
	13.08.1. Introduction
	13.08.2. Single-electron strategy by photoredox catalysis
		13.08.2.1. Photoredox palladium catalysis
		13.08.2.2. Photoredox copper catalysis
		13.08.2.3. Photoredox nickel catalysis
		13.08.2.4. Photoredox catalysis with other metals
	13.08.3. Single-electron strategy by electrocatalysis
		13.08.3.1. Electrochemical manganese catalysis
		13.08.3.2. Electrochemical copper catalysis
		13.08.3.3. Electrochemical nickel catalysis
		13.08.3.4. Electrochemical cobalt catalysis
	13.08.4. Radical relay in metal catalysis
		13.08.4.1. Net-oxidizing reaction
		13.08.4.2. Net-reducing reaction
		13.08.4.3. Redox-neutral reaction
	13.08.5. Oxidatively induced reductive elimination
	13.08.6. Conclusion and perspective
	References
13.09 Transition Metal-Catalyzed Copolymerization of Olefins With Polar Functional Monomers
	13.09.1. Introduction
	13.09.2. Mechanism and ``polar monomer problem´´ for transition-metal-catalyzed olefin copolymerization
	13.09.3. Early transition metal-catalyzed copolymerization of ethylene with polar monomers
		13.09.3.1. Rare-earth catalysts
		13.09.3.2. Group IV catalysts
	13.09.4. Late transition metal catalyzed copolymerization of ethylene with polar functionalized olefins
		13.09.4.1. α-Diimine catalysts (Brookhart-type)
		13.09.4.2. Phosphine-sulfonate catalysts (Drent-type)
		13.09.4.3. Catalysts beyond Brookhart and Drent systems
	13.09.5. Transition metal catalyzed-copolymerization of propylene with polar monomers
		13.09.5.1. Group IV catalysts
		13.09.5.2. Ni and Pd catalysts
	13.09.6. Copolymerization of other alkenes (styrene, dienes) with polar monomers
	13.09.7. Conclusions
	References
13.10 Polymerization of Epoxides
	13.10.1. Introduction
	13.10.2. Homopolymerization of epoxides
		13.10.2.1. Mechanistic aspects
			13.10.2.1.1. Ionic polymerizations
				13.10.2.1.1.1. Cationic initiators
				13.10.2.1.1.2. Anionic initiators
		13.10.2.2. Catalysts for epoxide polymerization
	13.10.3. Alternating copolymerization of epoxides and carbon monoxide
		13.10.3.1. Catalysts for the coupling of epoxides and CO to poly(3-hydroxyalkanoate)s
		13.10.3.2. Mechanistic aspects of epoxide/CO polymerization reactions
	13.10.4. Alternating copolymerization of epoxides and carbon dioxide
		13.10.4.1. Mechanistic aspects of CO2/epoxide copolymerization processes
		13.10.4.2. Improvement in catalysts
			13.10.4.2.1. Mono-metallic catalysts
			13.10.4.2.2. Bimetallic catalysts
			13.10.4.2.3. Organocatalysts
	13.10.5. Block copolymers of epoxides/CO2 and other monomers
		13.10.5.1. Sequential monomer addition
		13.10.5.2. Chain-transfer polymerization
		13.10.5.3. Kinetic controlled polymerization
	13.10.6. Alternating copolymerization of epoxides and anhydrides
	13.10.7. Alternating copolymerization of epoxides and COS or CS2
		13.10.7.1. Epoxides and CS2
		13.10.7.2. Epoxide and COS
	13.10.8. Conclusions and outlook
	References
13.11 Reaction Parameterization as a Tool for Development in Organometallic Catalysis
	13.11.1. Introduction
	13.11.2. Conventional ligand classification
	13.11.3. Quantifying ligand electronic properties
		13.11.3.1. Tolman electronic parameter (TEP)
		13.11.3.2. Ligand electrochemical parameter (LEP)
		13.11.3.3. Computed electronic parameter (CEP), molecular electrostatic potential (MESP) and metal-ligand electronic para ...
		13.11.3.4. Huynh electronic parameter (HEP)
		13.11.3.5. NMR spectroscopy of selenoureas or carbene-phosphinidene adducts and 1J(C-H) coupling constants of azolium salts
	13.11.4. Descriptors for ligand steric properties
		13.11.4.1. Tolman cone angle and the bite angle
		13.11.4.2. Percent buried volume
		13.11.4.3. Topographic steric maps
	13.11.5. Analysis of catalyst performance based on parameterization of ancillary ligands
		13.11.5.1. Catalytic trends of transition metal complexes bearing monodentate phosphines
		13.11.5.2. Parameterization of transition metal complexes bearing monodentate phosphines
		13.11.5.3. Catalytic trends of transition metal complexes bearing diphosphines
		13.11.5.4. Parameterization of transition metal complexes bearing diphosphines
		13.11.5.5. Catalytic trends of transition metal complexes bearing NHC ligands
		13.11.5.6. Catalytic trends of transition metal complexes bearing other ligands
		13.11.5.7. Parameterization of transition metal complexes bearing other ligands
	Acknowledgment
	References
13.12 High-Throughput Experimentation in Organometallic Chemistry and Catalysis
	13.12.1. Introduction
		13.12.1.1. Purpose and scope of this chapter
		13.12.1.2. Additional reviews and resources
	13.12.2. Tools and techniques
		13.12.2.1. Experimental design
		13.12.2.2. Array set up and dispensing
		13.12.2.3. Reaction execution
		13.12.2.4. High-throughput analysis
		13.12.2.5. Data interrogation
	13.12.3. Specific applications in catalysis
		13.12.3.1. CH bond formation: Asymmetric hydrogenation
		13.12.3.2. CC bond formation: Suzuki-Miyaura cross-coupling
		13.12.3.3. CC bond formation: Negishi and Kumada-Corriu couplings
		13.12.3.4. CC bond formation: Cross-electrophile couplings
		13.12.3.5. CC bond formation: Mizoroki-Heck coupling
		13.12.3.6. CC bond formation: Sonogashira coupling
		13.12.3.7. CC bond formation: C-H arylation
		13.12.3.8. CC bond formation: Allylation
		13.12.3.9. CC bond formation: Carbonylative coupling
		13.12.3.10. CC bond formation: Alkene metathesis
		13.12.3.11. CC bond formation: Alkene polymerization and selective oligomerization
		13.12.3.12. CC bond formation: Other reactions
		13.12.3.13. CN bond formation: Buchwald-Hartwig and Ullmann-Goldberg coupling
		13.12.3.14. CN bond formation: Chan-Lam and other oxidative couplings
		13.12.3.15. CN bond formation: Hydroamination
		13.12.3.16. CN bond formation: Other reactions
		13.12.3.17. CO bond formation: Hydroxylation/etherification
		13.12.3.18. CO bond formation: Other reactions
		13.12.3.19. CB bond formation: Miyaura borylation
		13.12.3.20. CB bond formation: C-H borylation
		13.12.3.21. Other reactions
	13.12.4. Conclusions and future trends
	Acknowledgment
	References
Cover back




نظرات کاربران