دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Yu Bai
سری: Springer Tracts in Civil Engineering
ISBN (شابک) : 9811942773, 9789811942778
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 386
[387]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Composites for Building Assembly: Connections, Members and Structures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کامپوزیت ها برای مونتاژ ساختمان: اتصالات، اعضا و سازه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب ساختمانهایی را ارائه میکند که با استفاده از روشهای مونتاژ مدولار مبتنی بر کامپوزیتهای پلیمری تقویتشده با الیاف سبک و مقاوم در برابر خوردگی (FRP) ساخته شدهاند. روش های ساخت و ساز و انتخاب مصالح ساختمانی فرصت های خوبی برای راه حل های سازنده تر و سازگار با محیط زیست ارائه می دهد. این کتاب شامل دادههای تجربی ارزشمندی در مورد اجزای سازهای در مقیاس بزرگ (تیرها، دالها، ستونها)، اتصالات (اتصالات برشی، اتصالات گل میخ دیوار، اتصالات تیر به ستون، اتصالات ستون و ستون) و سازهها (سیستم کف مرکب، مجموعههای ساندویچی سازهای است. ، و نمایش های ساختاری در مقیاس کامل)، با مدل سازی عددی دقیق و روش های تحلیلی پشتیبانی می شود. عمدتاً با تکیه بر تحقیقات ویراستار در ده سال گذشته با ورودی های تعدادی از Ph.D. دانش آموزان، این کتاب به موقع آخرین تحولات در این زمینه را ارائه می دهد.
شامل شکلها و عکسهای با طراحی خوب، فرمولبندیهای تحلیلی که توسط دادهها و متن پشتیبانی میشوند، و همچنین توضیحاتی در مورد i) معرفی مجموعهای از اجزای ساختاری و اتصالات نوآورانه و مجموعههای آنها و 2) عملکرد آنها را در مقایسه با راه حل ها و معیارهای موجود نشان دهد. این کتاب برای محققین، دانشجویان تحصیلات تکمیلی و مهندسین رشته های صنایع ساختمانی و کامپوزیت در نظر گرفته شده است.
This book presents buildings developed using modular assembly approaches based on lightweight and corrosion-resistant fiber reinforced polymer (FRP) composites. Construction methods and the choice of building materials offer great opportunities for more productive and environmentally friendly solutions. This book includes valuable experimental data on large-scale structural components (beams, slabs, amd columns), connections (shear connections, wall stud connections, beam-column connections, column-column connections) and structures (composite floor system, structural sandwich assemblies, and full-scale structural demonstrations), supported with detailed numerical modelling and analytical methods. Largely drawing on the editor’s research over the past ten years with inputs from a number of Ph.D. students, this timely book presents the latest developments in the field.
It includes well-designed figures and photographs, analytical formulations supported by data and text, as well as descriptions to i) introduce a series of innovative structural components and connections and their assemblies and ii) illustrate their performance compared to existing solutions and criteria. This book is intended for researchers, graduate students and engineers in fields of the construction and composites industries.
Preface Disclaimer Contents 1 Introduction 1.1 Background 1.2 Development of FRP Building Structures 1.2.1 Free-Form Structures by Lay-Up and Moulding Process 1.2.2 Snap-Fit Panelised Structures 1.2.3 Frame Structures Assembled from Pultruded FRPs 1.3 Scope of the Work 1.3.1 Beam and Slab Members 1.3.2 Column and Wall Members 1.3.3 Connections 1.3.4 Fire Resistance 1.3.5 Large Scale Structural Applications References 2 Fibre Reinforced Polymer Built-Up Beams and One-Way Slabs 2.1 Introduction 2.2 Experimental Investigation 2.2.1 Overview 2.2.2 Materials 2.2.3 Specimens 2.2.4 Experimental Setup and Instrumentation 2.3 Experimental Results 2.3.1 Load–Deflection Response 2.3.2 Failure Mode 2.3.3 Axial Strain Along Specimen Depth 2.3.4 Axial Strain Along Specimen Width 2.4 Discussion and Comparison 2.4.1 Bending Stiffness 2.4.2 Structural Load-Carrying Capacity 2.4.3 Effect of Foam Core 2.4.4 Effect of Discontinuous Bonding 2.4.5 Comparison to RC One-Way Spanning Slab 2.5 Conclusions References 3 Fibre Reinforced Polymer Composites Two-Way Slabs 3.1 Introduction 3.2 Experimental Investigation 3.2.1 Materials 3.2.2 Specimens 3.2.3 Setup and Instrumentation 3.3 Simplified FE Analysis 3.4 Experimental Results and Comparison with FE Modelling 3.4.1 Load–Deflection Responses and Bending Stiffness 3.4.2 Failure Modes and Load-Carrying Capacity 3.4.3 Stresses on Slab Surface 3.4.4 Axial Strains Along Depth of Section 3.5 Analytical Approach and Discussion 3.5.1 Grillage Analysis 3.5.2 Degree of Composite Action in Longitudinal Slab Direction 3.5.3 Degree of Composite Action in Transverse Slab Direction 3.5.4 Load-Carrying Capacity 3.6 Conclusions References 4 Steel- Fibre Reinforced Polymer Composite Beams 4.1 Introduction 4.2 Experimental Investigation 4.2.1 Materials 4.2.2 Specimens 4.2.3 Experimental Setup and Instrumentation 4.3 Experimental Results and Discussion 4.3.1 Load–Deflection Response 4.3.2 Yielding of Composite Beams 4.3.3 Failure of Composite Beams 4.3.4 Composite Action at FRP-Steel Interface 4.3.5 Composite Action of FRP Web-Flange Sandwich Slabs 4.3.6 Axial Strain Along Specimen Width 4.4 Analytical Evaluation 4.4.1 Effective Width and Shear Lag 4.4.2 Bending Stiffness 4.4.3 Degree of Composite Action Factor Λ 4.4.4 Evaluation of Deflections 4.4.5 Yielding Load Py 4.5 Numerical Comparison 4.6 Conclusions References 5 Composite Actions of Steel-Fibre Reinforced Polymer Composite Beams 5.1 Introduction 5.2 Description of Steel-FRP Composite Beams 5.3 Experimental Investigation on Shear Stiffness of One-Sided Bolt Connectors 5.3.1 Materials 5.3.2 Joint Specimens and Experimental Setup 5.4 Results and Discussion 5.4.1 Joint Stiffness and Slip Modulus 5.4.2 Joint Capacity 5.5 Theoretical Formulation of Partial Composite Actions 5.5.1 Bending Stiffness Considering Partial Composite Action at Steel/FRP Interface 5.5.2 Bending Stiffness Considering Partial Composite Actions at Steel/FRP Interface and Within the FRP Slab 5.6 Concluding Remarks References 6 Fibre Reinforced Polymer Columns in Axial Compression 6.1 Introduction 6.2 Experimental Study 6.2.1 Materials 6.2.2 Specimens 6.2.3 Experimental Setup and Instrumentation 6.3 Experimental Results and Discussion 6.3.1 Failure Modes 6.3.2 Load-Strain Responses 6.3.3 Load-Lateral Displacement Curves 6.3.4 Determination of Compressive Capacity PC and Local Buckling Load PLocal 6.4 Effects of Width-Thickness Ratio b/t on Failure Modes 6.4.1 Formulation of Critical b/t for Compressive Failure and Local Buckling 6.4.2 Comparison with Experimental Results 6.4.3 Full Failure Modes Map 6.5 Load-Carrying Capacity Considering Λ and b/t for SHS Sections 6.5.1 Formulation 6.5.2 Comparisons 6.6 Conclusions References 7 Fibre Reinforced Polymer Wall Assemblies in Axial Compression 7.1 Introduction 7.2 Experimental Investigation 7.2.1 Materials 7.2.2 Specimens 7.2.3 Setup and Instrumentation 7.3 Finite Element Analysis 7.4 Experimental Results 7.4.1 Failure Modes 7.4.2 Load-Axial Displacement Curves 7.4.3 Load-Lateral Displacement Curves 7.4.4 Load-Strain Responses 7.5 Discussions 7.5.1 Load-Bearing Capacity 7.5.2 Effects of Spacing Between SHS Sections 7.5.3 Comparison of Bonded and Bolted Connections 7.6 Conclusions References 8 Fibre Reinforced Polymer Columns with Bolted Sleeve Joints under Eccentric Compression 8.1 Introduction 8.2 Experimental Program 8.2.1 Materials and Specimens 8.2.2 Bolted Sleeve Joint (BSJ) 8.2.3 Experimental Setup and Instrumentation 8.3 FE Analysis 8.3.1 Model Description 8.3.2 Failure Criterion 8.4 Results and Discussion 8.4.1 Failure Modes 8.4.2 Load-Axial Shortening Curves 8.4.3 Load-Lateral Displacement Curves 8.4.4 Load-Axial Strain Responses 8.4.5 FE Verification of Splitting Failure at BSJ Region 8.4.6 Load-Bearing Capacities of GFRP Columns with BSJs 8.4.7 P-M Interaction Curve 8.5 Conclusions References 9 Connections of Fibre Reinforced Polymer to Steel Members: Experiments 9.1 Introduction 9.2 Experimental Program 9.2.1 Connection Design 9.2.2 Materials 9.2.3 Specimens 9.2.4 Experimental Set-Up and Instrumentation 9.3 Experimental Results and Discussions 9.3.1 Failure Modes 9.3.2 Moment-Rotation and Shear-Rotation Curves 9.3.3 Strain Responses of Steel Connectors 9.3.4 Comparisons on the Connection Stiffness and Capacity 9.3.5 Classification of the Connections 9.4 Conclusions References 10 Connections of Fibre Reinforced Polymer to Steel Members: Numerical Modelling 10.1 Introduction 10.2 Experimental Summary 10.3 Detailed FE Modelling 10.3.1 Material Properties 10.3.2 Failure Criteria 10.3.3 Model Set-Up 10.4 Verification of Modelling Results 10.5 Parametric Study of Bonded Sleeve Connections 10.5.1 Effect of Endplate Thickness 10.5.2 Effect of Bonded Sleeve Length 10.5.3 Effect of Number of Go-Through Bolts 10.5.4 Effect of Central One-Sided Bolts for Connecting Endplate 10.6 Conclusions References 11 Cyclic Performance of Bonded Sleeve Beam-Column Connections 11.1 Introduction 11.2 Experimental Program 11.2.1 Materials 11.2.2 Specimens 11.2.3 Cyclic Loading Program 11.2.4 Experimental Setup 11.2.5 Instrumentation 11.3 Experimental Results and Discussion 11.3.1 Failure Modes 11.3.2 Moment-Rotation Responses 11.3.3 Local Strain Responses 11.3.4 Ultimate Rotation, Moment Capacity and Ductility of Connections 11.3.5 Energy Dissipation Capacity 11.4 Finite Element Modelling 11.4.1 Modelling Approach 11.4.2 Modelling Validation 11.4.3 Effects of Endplate Thickness 11.5 Conclusions References 12 Joint Capacity of Bonded Sleeve Connections for Tubular Fibre Reinforced Polymer Members 12.1 Introduction 12.2 Summary of Experimental Results 12.3 Theoretical Formulation of Joint Capacity 12.3.1 Governing Differential Equations 12.3.2 Bond-Slip Relationship of Adhesive Layer 12.3.3 Joint Capacity Pe at Elastic Limit 12.3.4 Joint Capacity Pu,s1 at Ultimate State for Softening of Only One End 12.3.5 Joint Capacity Pu,s2 at Ultimate State for Softening of Both Ends 12.3.6 Joint Capacity Pu,sf at Ultimate State for Softening of Full Bond Length 12.4 FE Analysis 12.4.1 Geometries and Materials 12.4.2 Model Establishment 12.4.3 Boundary Condition and Loading 12.5 Results and Discussion 12.5.1 Comparison of Ultimate Joint Capacity 12.5.2 Shear Stress Distribution 12.5.3 Effect of Bond Length on Joint Capacity 12.5.4 Effect of Stiffness Ratio on Joint Capacities 12.6 Conclusions References 13 Axial Performance of Splice Connections for Fibre Reinforced Polymer Columns 13.1 Introduction 13.2 Experimental Program 13.2.1 Specimens 13.2.2 Material Properties 13.2.3 Instrumentation and Experimental Setup 13.3 Finite Element Modelling 13.3.1 Geometric Modelling and Material Definitions 13.3.2 Modelling of Bond Behaviour in BSJs 13.3.3 Modelling of Contact and Pretension in BFJs 13.4 Results and Discussion: BSJ Specimens 13.4.1 Failure Modes and Load–Displacement Responses 13.4.2 Joint Capacity Versus Bond Length 13.4.3 Strain Responses 13.4.4 Adhesive Shear Stress Distribution 13.5 Results and Discussion: BFJ Specimens 13.5.1 Failure Modes and Load-Displacement Behaviours 13.5.2 Stress Distribution and Load-Strain Responses 13.6 Integrated Performance of Proposed Splice Connection 13.7 Conclusions References 14 Cyclic Performance of Splice Connections for Fibre Reinforced Polymer Members 14.1 Introduction 14.2 Experimental Program 14.2.1 Specimens and Fabrication 14.2.2 Material Properties 14.2.3 Test Setup and Instrumentation 14.2.4 Cyclic Loading Program 14.3 Finite Element Modelling 14.3.1 Geometries, Element Types, Material Models and Boundary Conditions 14.3.2 Modelling of Steel-GFRP Bond 14.4 Results and Discussion 14.4.1 Moment-Rotation Responses and Failure Modes 14.4.2 Cyclic Performance 14.4.3 Local Strain Responses 14.4.4 GFRP Failure 14.5 Conclusions References 15 Fire Performance of Loaded Fibre Reinforced Polymer Multicellular Composite Structures 15.1 Introduction 15.2 Experimental Investigation 15.2.1 Specimen Preparation 15.2.2 Experimental Setup 15.3 Numerical Modeling 15.3.1 Material Properties 15.4 Results and Discussion 15.4.1 Temperature Responses 15.4.2 Mid-Span Deflection 15.4.3 Effects of Fire Resistance Panel on Thermal Response 15.4.4 Mechanical Loading Effects 15.5 Conclusions References 16 Large Scale Structural Applications 16.1 Introduction 16.2 An All-GFRP Footbridge 16.2.1 Materials and Structure 16.2.2 Experimental Setup and Scenarios 16.2.3 Load–Deflection Responses 16.2.4 Longitudinal Strain Distribution Along Specimen Depth 16.2.5 Longitudinal Strain Distribution Along Specimen Width 16.2.6 Conclusions 16.3 GFRP Space Frame 16.3.1 Components and Structure 16.3.2 Experimental Scenarios 16.3.3 Results and Discussion 16.3.4 Conclusions 16.4 GFRP House Frames 16.4.1 Conceptual Design 16.4.2 Structural Analysis 16.4.3 Assembly Process 16.4.4 Further Considerations 16.5 GFRP Modular Retaining Wall 16.5.1 Member Performance 16.5.2 Connection Performance 16.6 Summary References