دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Hamed Yazdani Nezhad. Vijay Kumar Thakur
سری: IET Manifacturing Series, 15
ISBN (شابک) : 1839531495, 9781839531491
ناشر: The Institution of Engineering and Technology
سال نشر: 2023
تعداد صفحات: 793
[794]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 45 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Composites Assembly for High Performance Fastener-less Structures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مونتاژ کامپوزیت برای سازه های بدون بست با کارایی بالا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مجموعه کامپوزیت برای سازههای بدون بست با کارایی بالا گستره وسیع و متعادلی از اطلاعات را فراهم میکند که هم اصول و هم کاربردها را در تحقیقات و توسعه پیشرفته دانشگاهی و صنعتی پوشش میدهد. در مورد مونتاژ، اتصال، بازرسی و تعمیر ساختارهای با کارایی بالا ساخته شده از کامپوزیت های پلیمری تقویت شده با الیاف و نانوکامپوزیت های چند منظوره. این دانش برای تحقق ویژگیهای حیاتی در مونتاژ و پیوستن به رویههای در حال تکامل (در طراحی، توسعه و تجزیه و تحلیل عملکرد آنها) در چنین سیستمهای چند مادهای ضروری است، اما همچنین برای نگهداری در طول عمر اجزای کامپوزیت مورد استفاده در طیف وسیعی از مهندسیها ضروری است. کاربردهایی مانند سازه های مرکب مورد استفاده برای پره های توربین بادی، قطعات خودرو، بال هواپیما و بدنه. این کتاب همچنین به روشهای آزمایش غیرمخرب مورد استفاده برای تشخیص آسیبهای ایجاد شده در اتصالات کامپوزیتی میپردازد، که برای تصمیمگیری در مورد نیاز به تعمیر ضروری است.
کتاب با ارائه یک مطلب آغاز میشود. شرح اساسی الزامات اتصال، مونتاژ و تعمیر کامپوزیت. در ادامه به انواع روشهای اتصال و تعمیر در سازههای کامپوزیتی از اتصال چسب ترموست گرفته تا هیبریداسیون ترموپلاستیک، تقویت ضخامت و سازههای ساندویچی میپردازد. فصول بعدی ارزیابی قابل اعتماد تحمل آسیب سازه و روشهای ارزیابی خرابی، از جمله بازرسیهای غیر مخرب و نظارت بر سلامت سازه مبتنی بر پردازش تصویر را پوشش میدهند، و درک درستی از مکانیسمهای زوال محتمل در پردازش و مونتاژ مواد و سازههای کامپوزیتی ارائه میدهند. این کتاب با پیشرفتهترین فناوریهای نانوکامپوزیتهای چند منظوره همراه با کاربرد ساختارهای با کارایی بالا برای سنجش خود، برداشت انرژی و خیاطی خواص است.
مونتاژ کامپوزیت برای سازههای بدون بست با کارایی بالا روشهای مدرن برای مونتاژ، آسیبهای حین سرویس و مراحل تعمیر را به همراه مقررات گواهینامه و تعمیر موجود، و به دنبال آن فرصتهای آیندهنگر گرد هم میآورد. برای توانمندسازی و ظهور نانوکامپوزیت های پلیمری برای ساختارهای هوشمند، برای مخاطبانی از محققان دانشگاهی، دانشجویان پیشرفته، مهندسان و متخصصان تولید.
Composites Assembly for High Performance Fastener-less Structures provides a broad and balanced span of information, covering both fundamentals and applications across academic and industrial state-of-the-art research and development on assembly, joining, inspection and repair of high-performance structures made from fibre-reinforced polymer composites and multifunctional nanocomposites. This knowledge is essential for the realisation of critical features in assembly and joining evolving procedures (across their design, development and performance analysis) in such multi-material systems, but also for the through-life maintenance of composite components used in a range of engineering applications such as those composite structures utilised for wind turbine blades, automotive parts, aircraft wings and fuselage. The book also addresses the non-destructive testing methods used to detect damage occurring in composite joints, which are essential to decide if the repair is needed.
The book begins by providing a fundamental description of the requirements for composite joining, assembly and repair. It goes on to address a variety of joining and repair procedures in composite structures from thermoset adhesive bonding to thermoplastic hybridisation, through-the-thickness reinforcement and sandwich structures. Further chapters cover the reliable assessment of structure's damage tolerance and failure assessment procedures, including non-destructive inspections and image processing based structural health monitoring, and provide understanding of the most likely deterioration mechanisms occurring in processing and assembly of composite materials and structures. The book is wrapped up with the ongoing state-of-the-arts in multifunctional nanocomposites with application for high-performance structures for self-sensing, energy harvesting and properties tailoring.
Composites Assembly for High Performance Fastener-less Structures brings together state-of-the-art practices for assembly, in-service damage and repair procedures along with the existing certification and repair regulations, followed by the futuristic opportunities for enabling and emerging polymer nanocomposites for smart structures, for an audience of academic researchers, advanced students, engineers and manufacturing professionals.
Contents Preface About the Editors 1 Overview on design and manufacturing of assembled composite aerostructures 1.1 Introduction 1.2 General philosophy for strength analysis of primary aerospace composite structures 1.2.1 Overview on structural analysis methods 1.3 Fastened joints 1.3.1 Load distribution in composite joints 1.3.2 Composite material failure at joint 1.4 Bonded joints 1.4.1 Types of failure in adhesive bonded joints 1.4.2 Stress analysis of adhesive bonded lap joints 1.5 Fabrication of bonded joints 1.5.1 Joints in space industry 1.5.2 Joints in aviation industry 1.6 Joint assembly 1.6.1 Significance of bond-line control 1.6.2 The need for bond-line control 1.6.3 Advantages and disadvantages of adhesive bonding 1.7 Conclusions References 2 Processing of polymer composites: autoclave and microwave energy approaches 2.1 Introduction 2.2 Fundamentals 2.2.1 Basic principles 2.2.2 Mathematical models 2.2.3 Experimental details 2.3 Challenges in autoclave and microwave curing 2.4 Concluding remarks References 3 Industry 4.0 for composites manufacturing 3.1 Introduction 3.2 Composites context of Industry 4.0 3.3 Literature review 3.3.1 Composites technology 3.3.2 Business challenges 3.3.3 Industry 4.0 3.4 Critical assessment 3.4.1 Key trends 3.4.2 Gaps and research aim refinement 3.5 Concluding remarks References 4 Development of fibre-reinforced polymer composites through direct digital manufacturing 4.1 Introduction 4.2 Fiber-reinforced AM composites 4.3 Fused deposition modeling 4.4 Selective laser sintering (SLS) 4.5 Mechanical properties 4.5.1 Tensile strength 4.5.2 Fatigue strength 4.5.3 Creep deformation 4.5.4 Fracture toughness 4.5.5 Machine learning 4.6 Applications 4.7 Sustainability 4.8 Challenges and future prospective References 5 Joining and repair of resin-infused, continuous fibre-reinforced, thermoplastic acrylic-matrix composites for extended applicability 5.1 Introduction 5.2 Liquid acrylic resin-based composites 5.2.1 Manufacturing 5.2.2 Comparison with conventional thermoset composites 5.3 Joining of acrylic-matrix composites 5.4 Thermoplastic acrylic-matrix fibre-metal laminates 5.5 End-of-life opportunities with acrylic-based composites 5.5.1 Applicability of recyclate matrix 5.5.2 Repairability of acrylic-matrix composites 5.5.3 Reshapability of acrylic-matrix composites 5.6 Future opportunities 5.7 Conclusion References 6 Aerospace composites' repair: integrated processes' feasibility 6.1 Introduction 6.1.1 Aim of the project 6.2 Structure and methodology 6.2.1 Methodology 6.2.2 Literature review 6.2.3 Damage in composite structures 6.2.4 Main causes and associated costs of damages 6.2.5 Typical damages in composites 6.3 NDI techniques 6.3.1 Ultrasonic testing (UT) 6.3.2 Thermography 6.3.3 Shearography 6.3.4 Combination of thermography and shearography 6.3.5 Other NDI techniques 6.3.6 Post repair inspection 6.3.7 Material removal 6.3.8 Surface preparation 6.3.9 Surface treatments 6.4 Material and conditions 6.4.1 Hard and soft patch 6.4.2 To bond or to bolt? 6.4.3 Quality control 6.4.4 Structural health monitoring 6.4.5 Repair certification 6.5 Needs assessment 6.5.1 Available systems 6.5.2 Gap analysis 6.5.3 Situation of the composite industry in the UK 6.6 Feasibility 6.6.1 NDI system 6.6.2 Commercial options 6.6.3 Machinable area 6.6.4 Material removal 6.6.5 Conventional machining 6.6.6 Laser system 6.6.7 3D scanning 6.6.8 Commercial options 6.6.9 Patch 6.6.10 Patch design 6.6.11 Patch production 6.6.12 Adhesives 6.6.13 On-site curing 6.7 Implementation 6.7.1 Experimental testing 6.8 Conclusion References 7 Augmented reality-equipped composites bonded repair 7.1 Introduction 7.1.1 Project background 7.1.2 Previous group project outcome 7.1.3 Gap analysis 7.1.4 Aim and objectives 7.2 Methodology 7.3 Literature review 7.3.1 Defects and damages in composite materials and structures 7.3.2 Manufacturing defects 7.3.3 Common service-life damages 7.3.4 Alternative classification of composite impact damage 7.3.5 Composite material repairing technique 7.3.6 Classification of composite material repairing method 7.3.7 Scarf-based repair process 7.4 Augmented reality 7.4.1 Augmented reality technique 7.4.2 Application of augmented reality into aircraft industry 7.5 Concept design 7.5.1 Project scope selection 7.5.2 Reparation method 7.5.3 Target process 7.5.4 Scenario design 7.5.5 Panel 7.5.6 Patches 7.5.7 Bagging layers design 7.5.8 Other assisting materials and equipment 7.5.9 Overall vacuum bagging system 7.5.10 Functionality design 7.6 Implementation and result 7.6.1 Hardware configuration 7.6.2 Developing environment configuration 7.6.3 Coding language 7.6.4 Developing process 7.6.5 Program validation 7.7 Discussion 7.7.1 Strengths 7.7.2 Challenges 7.7.3 Future work 7.7.4 Prospect 7.8 Conclusion References 8 3D printing of multi-material polymer composite systems 8.1 Introduction 8.2 Theoretical background 8.2.1 Material science 8.2.2 Polymer blends 8.2.3 Fillers and reinforcements 8.2.4 Particulates 8.2.5 Metallic polymer composites 8.2.6 Ceramic polymer composites 8.2.7 Carbon polymer composites 8.2.8 Fibres and whiskers 8.2.9 Final impressions 8.3 Objectives 8.4 Numerical simulation 8.4.1 Schematic 8.4.2 Parameters 8.4.3 Boundary conditions 8.4.4 Mesh discretisation 8.4.5 Estimating thermo-physical properties 8.5 Results and discussion 8.5.1 Estimated thermo-physical properties of specimens 8.5.2 Slicing 8.6 Conclusion References 9 3D printing of composites for space applications 9.1 Introduction 9.2 3D-printed structures 9.2.1 Heat shields for suborbital flight 9.2.2 Radiation shields in low-Earth orbits or deep space 9.2.3 Issues in printing and assembling structural parts 9.3 3D-printed electronics 9.3.1 Traces and substrates 9.3.2 Passive components 9.3.3 Active components 9.4 3D-printed batteries 9.5 3D-printed devices for medical and life support purposes 9.6 Conclusion Acknowledgements References 10 Development and manufacturing of thermoplastic composite booms for drag augmentation system of a small satellite 10.1 Introduction 10.1.1 Background 10.1.2 Cranfield University's de-orbit mechanism 10.1.3 Project's aims and objectives 10.2 Designs of booms 10.2.1 TRAC boom 10.2.2 STEM boom 10.2.3 CTM booms 10.3 Additive manufacturing 10.3.1 Markforged's FDM printer and materials 10.4 Design of the CTM boom 10.4.1 Onyx and CuBe 10.4.2 Cross-section geometry 10.4.3 Finite element analysis of CTM boom 10.4.4 Three-point bending test methodology 10.5 Manufacturing of the CTM booms 10.5.1 Horizontal, half profile 10.5.2 Vertical, full profile 10.5.3 Horizontal, full profile 10.6 Conclusion and future work References 11 Adhesively bonded polymer composite joints 11.1 Introduction 11.2 Bonding of composite materials 11.3 Composite adherend modifications 11.3.1 Transverse toughened and reinforced adherends 11.3.2 Functionally graded substrates 11.4 Bi-adhesive joints 11.4.1 Manufacturing techniques 11.4.2 Bi-adhesive SLJs 11.4.3 Other types of joints 11.5 Composite adhesives with natural fibres 11.5.1 Surface preparation 11.5.2 Cork particles 11.5.3 Date palm tree fibres References 12 Design principles and recent developments in adhesively bonded joints of fibre-reinforced plastic composite structures 12.1 Introduction 12.2 Design considerations and effective parameters in ABJs in FRP composites 12.2.1 Basics of adhesive bonding design and manufacturing considerations 12.2.2 Joint configuration: geometries and dimensions 12.2.3 Stress distribution and failure modes 12.2.4 Adhesive type 12.2.5 Surface preparation 12.2.6 Environmental parameters 12.2.7 Ease of assembly and costs 12.3 Characterisation methods for adhesively bonded composite-to-composite joints 12.3.1 Tensile test 12.3.2 Shear test 12.3.3 Peel test 12.3.4 Wedge cleavage test 12.3.5 Double cantilever beam (DCB), end-notched flexure (ENF) and mixed-mode tests 12.4 Analytical and finite element models for analysis of adhesively bonded composite-to-composite joints 12.4.1 Analytical analysis 12.4.2 Finite element analysis 12.5 Design principles and recent developments in high-performance composite-to-composite ABJs 12.6 Conclusions References 13 Mechanical degradation of composite bonded joints subjected to environmental effects 13.1 Introduction 13.1.1 Objectives 13.2 Literature review 13.2.1 Adhesive joints 13.2.2 Design aspects 13.2.3 Manufacture process 13.2.4 Durability 13.2.5 Non-destructive testing 13.2.6 Damage prediction 13.2.7 Overview 13.3 Methodology, materials and methods 13.3.1 Research methodology 13.3.2 Adhered manufacturing 13.3.3 SJL manufacturing 13.3.4 Hygrothermal cycles 13.3.5 Bulk adhesive specimens manufacturing 13.3.6 Materials' characterization 13.3.7 Mechanical properties 13.4 Experimental results 13.4.1 Introduction 13.4.2 Moisture characterization 13.4.3 Adhesive bonded SLJ test 13.5 Degradation modelling of adhesively bonded SLJ 13.5.1 Finite-element analysis 13.6 Discussion 13.6.1 Introduction 13.6.2 Moisture absorption 13.6.3 Moisture effect adhesive mechanical properties 13.6.4 Mechanical test results 13.6.5 Non-destructive inspection adhesive bonded joints 13.6.6 Degradation modelling 13.7 Conclusions and contribution References 14 Performance of aerospace composites in the presence of process-induced defects 14.1 Introduction 14.1.1 Aim 14.1.2 Objectives 14.2 Materials and manufacturing 14.2.1 Materials 14.2.2 Manufacturing 14.3 Testing 14.3.1 Lap shear test 14.3.2 NDI 14.4 Results and discussion 14.4.1 Lap shear test 14.4.2 NDI 14.4.3 Optical microscopy 14.5 Conclusions References 15 Interleaving in composites 15.1 Introduction 15.2 Measuring interleaving properties 15.3 Interleaving types and performance 15.3.1 Self-same matrix resin 15.3.2 Summary 15.3.3 Interleaving applied to stiffeners and adhesive joints 15.3.4 Selective interface interleaving 15.3.5 Summary References 16 A deep learning-based tool to predict delamination induced interlaminar stresses in composite structures 16.1 Introduction 16.2 Methodology 16.2.1 Design of experiments 16.2.2 Database development 16.2.3 Machine learning modelling 16.3 Results 16.3.1 Stress distributions within the composite panel 16.3.2 Performance measure plot 16.3.3 Training state plot 16.3.4 Error histogram 16.3.5 ML predictions and regression plot 16.4 Discussion 16.5 Conclusions References 17 Damage assessment of composites based on non-destructive pulsed thermographic inspection 17.1 Introduction 17.2 Experimental data 17.2.1 Specimen 17.2.2 Data collection 17.2.3 Temperature decay curve 17.3 Coefficient clustering analysis 17.4 Results and discussion 17.4.1 Damage detection 17.4.2 Damage measurement 17.5 Conclusions Acknowledgements References 18 Augmented reality-equipped composite monitoring 18.1 Introduction 18.2 Theory: measurement, simulation, and visualization 18.2.1 Review of literature and research 18.2.2 Stress and strain calculation through surface data 18.2.3 Image data processing and 3D modelling 18.3 Methodology 18.3.1 Deformation type 18.3.2 Composite laminates specifications 18.3.3 Photogrammetry measurements 18.3.4 LIDAR measurements 18.3.5 Point cloud denoising and distance measurements 18.3.6 Abaqus and MATLAB® simulation 18.3.7 AR Visualization 18.4 Results and discussion 18.4.1 Photogrammetry results 18.4.2 C2C from LIDAR and Abaqus results 18.4.3 Difficulties with MATLAB® code 18.4.4 Recommendations and future work 18.4.5 Scope of application Appendix A References 19 Energy harvesting and self-sensing multi-functional polymer composites 19.1 Energy harvesting and self-sensing 19.2 Piezoelectric effect 19.2.1 Piezoelectric materials 19.3 Energy harvesting polymer composites 19.3.1 Energy harvesting fibre-reinforced polymer composites 19.3.2 Energy harvesting polymer nanocomposites 19.4 Self-sensing and health monitoring polymer composites 19.5 Conclusions References 20 Tailoring thermo-mechanical properties of hybrid composite-metal bonded joint 20.1 Introduction 20.1.1 Aim 20.1.2 Objectives 20.2 Literature review 20.2.1 Carbon nanotube 20.2.2 Composite-metal adhesively bonded joint 20.2.3 Effects of CNTs on thermo-mechanical performance 20.2.4 CNTs dispersion 20.2.5 Mechanism of joint failure by CTE mismatch 20.2.6 Analytical calculations 20.2.7 Methods of thermal strain measurement 20.3 Specimens manufacturing 20.3.1 Material 20.3.2 Specimens manufacturing 20.4 Testing 20.4.1 Thermal strain measurement 20.4.2 Scanning electron microscopy 20.4.3 Raman spectroscopy 20.5 Results and discussion 20.5.1 Coefficient of thermal expansion 20.5.2 Scanning electron microscopy 20.5.3 Raman spectroscopy 20.5.4 Bond deficiency on specimens 20.6 Conclusion and further work References 21 High-performance nanocomposites for strain self-sensing applications in composite joints 21.1 Introduction 21.1.1 Structure of carbon nanotubes 21.1.2 Electromechanical properties 21.1.3 CNTs for strain sensing 21.2 Materials and methods 21.2.1 CNT fabrication 21.2.2 Sample manufacturing 21.2.3 Tensile and electrical resistance testing 21.2.4 Scanning electron microscopy 21.2.5 Raman spectroscopy 21.3 Results and discussion 21.3.1 Carbon nanotubes characterisation 21.3.2 Strain sensing 21.4 Conclusion 21.5 Future work Appendix A: Tensile tests Appendix B : Load vs displacement curves References Index