ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Composites Assembly for High Performance Fastener-less Structures

دانلود کتاب مونتاژ کامپوزیت برای سازه های بدون بست با کارایی بالا

Composites Assembly for High Performance Fastener-less Structures

مشخصات کتاب

Composites Assembly for High Performance Fastener-less Structures

ویرایش:  
نویسندگان:   
سری: IET Manifacturing Series, 15 
ISBN (شابک) : 1839531495, 9781839531491 
ناشر: The Institution of Engineering and Technology 
سال نشر: 2023 
تعداد صفحات: 793
[794] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 45 Mb 

قیمت کتاب (تومان) : 34,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Composites Assembly for High Performance Fastener-less Structures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مونتاژ کامپوزیت برای سازه های بدون بست با کارایی بالا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مونتاژ کامپوزیت برای سازه های بدون بست با کارایی بالا



مجموعه کامپوزیت برای سازه‌های بدون بست با کارایی بالا گستره وسیع و متعادلی از اطلاعات را فراهم می‌کند که هم اصول و هم کاربردها را در تحقیقات و توسعه پیشرفته دانشگاهی و صنعتی پوشش می‌دهد. در مورد مونتاژ، اتصال، بازرسی و تعمیر ساختارهای با کارایی بالا ساخته شده از کامپوزیت های پلیمری تقویت شده با الیاف و نانوکامپوزیت های چند منظوره. این دانش برای تحقق ویژگی‌های حیاتی در مونتاژ و پیوستن به رویه‌های در حال تکامل (در طراحی، توسعه و تجزیه و تحلیل عملکرد آنها) در چنین سیستم‌های چند ماده‌ای ضروری است، اما همچنین برای نگهداری در طول عمر اجزای کامپوزیت مورد استفاده در طیف وسیعی از مهندسی‌ها ضروری است. کاربردهایی مانند سازه های مرکب مورد استفاده برای پره های توربین بادی، قطعات خودرو، بال هواپیما و بدنه. این کتاب همچنین به روش‌های آزمایش غیرمخرب مورد استفاده برای تشخیص آسیب‌های ایجاد شده در اتصالات کامپوزیتی می‌پردازد، که برای تصمیم‌گیری در مورد نیاز به تعمیر ضروری است.

کتاب با ارائه یک مطلب آغاز می‌شود. شرح اساسی الزامات اتصال، مونتاژ و تعمیر کامپوزیت. در ادامه به انواع روش‌های اتصال و تعمیر در سازه‌های کامپوزیتی از اتصال چسب ترموست گرفته تا هیبریداسیون ترموپلاستیک، تقویت ضخامت و سازه‌های ساندویچی می‌پردازد. فصول بعدی ارزیابی قابل اعتماد تحمل آسیب سازه و روش‌های ارزیابی خرابی، از جمله بازرسی‌های غیر مخرب و نظارت بر سلامت سازه مبتنی بر پردازش تصویر را پوشش می‌دهند، و درک درستی از مکانیسم‌های زوال محتمل در پردازش و مونتاژ مواد و سازه‌های کامپوزیتی ارائه می‌دهند. این کتاب با پیشرفته‌ترین فناوری‌های نانوکامپوزیت‌های چند منظوره همراه با کاربرد ساختارهای با کارایی بالا برای سنجش خود، برداشت انرژی و خیاطی خواص است.

مونتاژ کامپوزیت برای سازه‌های بدون بست با کارایی بالا روش‌های مدرن برای مونتاژ، آسیب‌های حین سرویس و مراحل تعمیر را به همراه مقررات گواهی‌نامه و تعمیر موجود، و به دنبال آن فرصت‌های آینده‌نگر گرد هم می‌آورد. برای توانمندسازی و ظهور نانوکامپوزیت های پلیمری برای ساختارهای هوشمند، برای مخاطبانی از محققان دانشگاهی، دانشجویان پیشرفته، مهندسان و متخصصان تولید.


توضیحاتی درمورد کتاب به خارجی

Composites Assembly for High Performance Fastener-less Structures provides a broad and balanced span of information, covering both fundamentals and applications across academic and industrial state-of-the-art research and development on assembly, joining, inspection and repair of high-performance structures made from fibre-reinforced polymer composites and multifunctional nanocomposites. This knowledge is essential for the realisation of critical features in assembly and joining evolving procedures (across their design, development and performance analysis) in such multi-material systems, but also for the through-life maintenance of composite components used in a range of engineering applications such as those composite structures utilised for wind turbine blades, automotive parts, aircraft wings and fuselage. The book also addresses the non-destructive testing methods used to detect damage occurring in composite joints, which are essential to decide if the repair is needed.

The book begins by providing a fundamental description of the requirements for composite joining, assembly and repair. It goes on to address a variety of joining and repair procedures in composite structures from thermoset adhesive bonding to thermoplastic hybridisation, through-the-thickness reinforcement and sandwich structures. Further chapters cover the reliable assessment of structure's damage tolerance and failure assessment procedures, including non-destructive inspections and image processing based structural health monitoring, and provide understanding of the most likely deterioration mechanisms occurring in processing and assembly of composite materials and structures. The book is wrapped up with the ongoing state-of-the-arts in multifunctional nanocomposites with application for high-performance structures for self-sensing, energy harvesting and properties tailoring.

Composites Assembly for High Performance Fastener-less Structures brings together state-of-the-art practices for assembly, in-service damage and repair procedures along with the existing certification and repair regulations, followed by the futuristic opportunities for enabling and emerging polymer nanocomposites for smart structures, for an audience of academic researchers, advanced students, engineers and manufacturing professionals.



فهرست مطالب

Contents
Preface
About the Editors
1 Overview on design and manufacturing of assembled composite aerostructures
	1.1 Introduction
	1.2 General philosophy for strength analysis of primary aerospace composite structures
		1.2.1 Overview on structural analysis methods
	1.3 Fastened joints
		1.3.1 Load distribution in composite joints
		1.3.2 Composite material failure at joint
	1.4 Bonded joints
		1.4.1 Types of failure in adhesive bonded joints
		1.4.2 Stress analysis of adhesive bonded lap joints
	1.5 Fabrication of bonded joints
		1.5.1 Joints in space industry
		1.5.2 Joints in aviation industry
	1.6 Joint assembly
		1.6.1 Significance of bond-line control
		1.6.2 The need for bond-line control
		1.6.3 Advantages and disadvantages of adhesive bonding
	1.7 Conclusions
	References
2 Processing of polymer composites: autoclave and microwave energy approaches
	2.1 Introduction
	2.2 Fundamentals
		2.2.1 Basic principles
		2.2.2 Mathematical models
		2.2.3 Experimental details
	2.3 Challenges in autoclave and microwave curing
	2.4 Concluding remarks
	References
3 Industry 4.0 for composites manufacturing
	3.1 Introduction
	3.2 Composites context of Industry 4.0
	3.3 Literature review
		3.3.1 Composites technology
		3.3.2 Business challenges
		3.3.3 Industry 4.0
	3.4 Critical assessment
		3.4.1 Key trends
		3.4.2 Gaps and research aim refinement
	3.5 Concluding remarks
	References
4 Development of fibre-reinforced polymer composites through direct digital manufacturing
	4.1 Introduction
	4.2 Fiber-reinforced AM composites
	4.3 Fused deposition modeling
	4.4 Selective laser sintering (SLS)
	4.5 Mechanical properties
		4.5.1 Tensile strength
		4.5.2 Fatigue strength
		4.5.3 Creep deformation
		4.5.4 Fracture toughness
		4.5.5 Machine learning
	4.6 Applications
	4.7 Sustainability
	4.8 Challenges and future prospective
	References
5 Joining and repair of resin-infused, continuous fibre-reinforced, thermoplastic acrylic-matrix composites for extended applicability
	5.1 Introduction
	5.2 Liquid acrylic resin-based composites
		5.2.1 Manufacturing
		5.2.2 Comparison with conventional thermoset composites
	5.3 Joining of acrylic-matrix composites
	5.4 Thermoplastic acrylic-matrix fibre-metal laminates
	5.5 End-of-life opportunities with acrylic-based composites
		5.5.1 Applicability of recyclate matrix
		5.5.2 Repairability of acrylic-matrix composites
		5.5.3 Reshapability of acrylic-matrix composites
	5.6 Future opportunities
	5.7 Conclusion
	References
6 Aerospace composites' repair: integrated processes' feasibility
	6.1 Introduction
		6.1.1 Aim of the project
	6.2 Structure and methodology
		6.2.1 Methodology
		6.2.2 Literature review
		6.2.3 Damage in composite structures
		6.2.4 Main causes and associated costs of damages
		6.2.5 Typical damages in composites
	6.3 NDI techniques
		6.3.1 Ultrasonic testing (UT)
		6.3.2 Thermography
		6.3.3 Shearography
		6.3.4 Combination of thermography and shearography
		6.3.5 Other NDI techniques
		6.3.6 Post repair inspection
		6.3.7 Material removal
		6.3.8 Surface preparation
		6.3.9 Surface treatments
	6.4 Material and conditions
		6.4.1 Hard and soft patch
		6.4.2 To bond or to bolt?
		6.4.3 Quality control
		6.4.4 Structural health monitoring
		6.4.5 Repair certification
	6.5 Needs assessment
		6.5.1 Available systems
		6.5.2 Gap analysis
		6.5.3 Situation of the composite industry in the UK
	6.6 Feasibility
		6.6.1 NDI system
		6.6.2 Commercial options
		6.6.3 Machinable area
		6.6.4 Material removal
		6.6.5 Conventional machining
		6.6.6 Laser system
		6.6.7 3D scanning
		6.6.8 Commercial options
		6.6.9 Patch
		6.6.10 Patch design
		6.6.11 Patch production
		6.6.12 Adhesives
		6.6.13 On-site curing
	6.7 Implementation
		6.7.1 Experimental testing
	6.8 Conclusion
	References
7 Augmented reality-equipped composites bonded repair
	7.1 Introduction
		7.1.1 Project background
		7.1.2 Previous group project outcome
		7.1.3 Gap analysis
		7.1.4 Aim and objectives
	7.2 Methodology
	7.3 Literature review
		7.3.1 Defects and damages in composite materials and structures
		7.3.2 Manufacturing defects
		7.3.3 Common service-life damages
		7.3.4 Alternative classification of composite impact damage
		7.3.5 Composite material repairing technique
		7.3.6 Classification of composite material repairing method
		7.3.7 Scarf-based repair process
	7.4 Augmented reality
		7.4.1 Augmented reality technique
		7.4.2 Application of augmented reality into aircraft industry
	7.5 Concept design
		7.5.1 Project scope selection
		7.5.2 Reparation method
		7.5.3 Target process
		7.5.4 Scenario design
		7.5.5 Panel
		7.5.6 Patches
		7.5.7 Bagging layers design
		7.5.8 Other assisting materials and equipment
		7.5.9 Overall vacuum bagging system
		7.5.10 Functionality design
	7.6 Implementation and result
		7.6.1 Hardware configuration
		7.6.2 Developing environment configuration
		7.6.3 Coding language
		7.6.4 Developing process
		7.6.5 Program validation
	7.7 Discussion
		7.7.1 Strengths
		7.7.2 Challenges
		7.7.3 Future work
		7.7.4 Prospect
	7.8 Conclusion
	References
8 3D printing of multi-material polymer composite systems
	8.1 Introduction
	8.2 Theoretical background
		8.2.1 Material science
		8.2.2 Polymer blends
		8.2.3 Fillers and reinforcements
		8.2.4 Particulates
		8.2.5 Metallic polymer composites
		8.2.6 Ceramic polymer composites
		8.2.7 Carbon polymer composites
		8.2.8 Fibres and whiskers
		8.2.9 Final impressions
	8.3 Objectives
	8.4 Numerical simulation
		8.4.1 Schematic
		8.4.2 Parameters
		8.4.3 Boundary conditions
		8.4.4 Mesh discretisation
		8.4.5 Estimating thermo-physical properties
	8.5 Results and discussion
		8.5.1 Estimated thermo-physical properties of specimens
		8.5.2 Slicing
	8.6 Conclusion
	References
9 3D printing of composites for space applications
	9.1 Introduction
	9.2 3D-printed structures
		9.2.1 Heat shields for suborbital flight
		9.2.2 Radiation shields in low-Earth orbits or deep space
		9.2.3 Issues in printing and assembling structural parts
	9.3 3D-printed electronics
		9.3.1 Traces and substrates
		9.3.2 Passive components
		9.3.3 Active components
	9.4 3D-printed batteries
	9.5 3D-printed devices for medical and life support purposes
	9.6 Conclusion
	Acknowledgements
	References
10 Development and manufacturing of thermoplastic composite booms for drag augmentation system of a small satellite
	10.1 Introduction
		10.1.1 Background
		10.1.2 Cranfield University's de-orbit mechanism
		10.1.3 Project's aims and objectives
	10.2 Designs of booms
		10.2.1 TRAC boom
		10.2.2 STEM boom
		10.2.3 CTM booms
	10.3 Additive manufacturing
		10.3.1 Markforged's FDM printer and materials
	10.4 Design of the CTM boom
		10.4.1 Onyx and CuBe
		10.4.2 Cross-section geometry
		10.4.3 Finite element analysis of CTM boom
		10.4.4 Three-point bending test methodology
	10.5 Manufacturing of the CTM booms
		10.5.1 Horizontal, half profile
		10.5.2 Vertical, full profile
		10.5.3 Horizontal, full profile
	10.6 Conclusion and future work
	References
11 Adhesively bonded polymer composite joints
	11.1 Introduction
	11.2 Bonding of composite materials
	11.3 Composite adherend modifications
		11.3.1 Transverse toughened and reinforced adherends
		11.3.2 Functionally graded substrates
	11.4 Bi-adhesive joints
		11.4.1 Manufacturing techniques
		11.4.2 Bi-adhesive SLJs
		11.4.3 Other types of joints
	11.5 Composite adhesives with natural fibres
		11.5.1 Surface preparation
		11.5.2 Cork particles
		11.5.3 Date palm tree fibres
	References
12 Design principles and recent developments in adhesively bonded joints of fibre-reinforced plastic composite structures
	12.1 Introduction
	12.2 Design considerations and effective parameters in ABJs in FRP composites
		12.2.1 Basics of adhesive bonding design and manufacturing considerations
		12.2.2 Joint configuration: geometries and dimensions
		12.2.3 Stress distribution and failure modes
		12.2.4 Adhesive type
		12.2.5 Surface preparation
		12.2.6 Environmental parameters
		12.2.7 Ease of assembly and costs
	12.3 Characterisation methods for adhesively bonded composite-to-composite joints
		12.3.1 Tensile test
		12.3.2 Shear test
		12.3.3 Peel test
		12.3.4 Wedge cleavage test
		12.3.5 Double cantilever beam (DCB), end-notched flexure (ENF) and mixed-mode tests
	12.4 Analytical and finite element models for analysis of adhesively bonded composite-to-composite joints
		12.4.1 Analytical analysis
		12.4.2 Finite element analysis
	12.5 Design principles and recent developments in high-performance composite-to-composite ABJs
	12.6 Conclusions
	References
13 Mechanical degradation of composite bonded joints subjected to environmental effects
	13.1 Introduction
		13.1.1 Objectives
	13.2 Literature review
		13.2.1 Adhesive joints
		13.2.2 Design aspects
		13.2.3 Manufacture process
		13.2.4 Durability
		13.2.5 Non-destructive testing
		13.2.6 Damage prediction
		13.2.7 Overview
	13.3 Methodology, materials and methods
		13.3.1 Research methodology
		13.3.2 Adhered manufacturing
		13.3.3 SJL manufacturing
		13.3.4 Hygrothermal cycles
		13.3.5 Bulk adhesive specimens manufacturing
		13.3.6 Materials' characterization
		13.3.7 Mechanical properties
	13.4 Experimental results
		13.4.1 Introduction
		13.4.2 Moisture characterization
		13.4.3 Adhesive bonded SLJ test
	13.5 Degradation modelling of adhesively bonded SLJ
		13.5.1 Finite-element analysis
	13.6 Discussion
		13.6.1 Introduction
		13.6.2 Moisture absorption
		13.6.3 Moisture effect adhesive mechanical properties
		13.6.4 Mechanical test results
		13.6.5 Non-destructive inspection adhesive bonded joints
		13.6.6 Degradation modelling
	13.7 Conclusions and contribution
	References
14 Performance of aerospace composites in the presence of process-induced defects
	14.1 Introduction
		14.1.1 Aim
		14.1.2 Objectives
	14.2 Materials and manufacturing
		14.2.1 Materials
		14.2.2 Manufacturing
	14.3 Testing
		14.3.1 Lap shear test
		14.3.2 NDI
	14.4 Results and discussion
		14.4.1 Lap shear test
			14.4.2 NDI
			14.4.3 Optical microscopy
		14.5 Conclusions
		References
15 Interleaving in composites
	15.1 Introduction
	15.2 Measuring interleaving properties
	15.3 Interleaving types and performance
		15.3.1 Self-same matrix resin
		15.3.2 Summary
		15.3.3 Interleaving applied to stiffeners and adhesive joints
		15.3.4 Selective interface interleaving
		15.3.5 Summary
	References
16 A deep learning-based tool to predict delamination induced interlaminar stresses in composite structures
	16.1 Introduction
	16.2 Methodology
		16.2.1 Design of experiments
		16.2.2 Database development
		16.2.3 Machine learning modelling
	16.3 Results
		16.3.1 Stress distributions within the composite panel
		16.3.2 Performance measure plot
		16.3.3 Training state plot
		16.3.4 Error histogram
		16.3.5 ML predictions and regression plot
	16.4 Discussion
	16.5 Conclusions
	References
17 Damage assessment of composites based on non-destructive pulsed thermographic inspection
	17.1 Introduction
	17.2 Experimental data
		17.2.1 Specimen
		17.2.2 Data collection
		17.2.3 Temperature decay curve
	17.3 Coefficient clustering analysis
	17.4 Results and discussion
		17.4.1 Damage detection
		17.4.2 Damage measurement
	17.5 Conclusions
	Acknowledgements
	References
18 Augmented reality-equipped composite monitoring
	18.1 Introduction
	18.2 Theory: measurement, simulation, and visualization
		18.2.1 Review of literature and research
		18.2.2 Stress and strain calculation through surface data
		18.2.3 Image data processing and 3D modelling
	18.3 Methodology
		18.3.1 Deformation type
		18.3.2 Composite laminates specifications
		18.3.3 Photogrammetry measurements
		18.3.4 LIDAR measurements
		18.3.5 Point cloud denoising and distance measurements
		18.3.6 Abaqus and MATLAB® simulation
		18.3.7 AR Visualization
	18.4 Results and discussion
		18.4.1 Photogrammetry results
		18.4.2 C2C from LIDAR and Abaqus results
		18.4.3 Difficulties with MATLAB® code
		18.4.4 Recommendations and future work
		18.4.5 Scope of application
	Appendix A
	References
19 Energy harvesting and self-sensing multi-functional polymer composites
	19.1 Energy harvesting and self-sensing
	19.2 Piezoelectric effect
		19.2.1 Piezoelectric materials
	19.3 Energy harvesting polymer composites
		19.3.1 Energy harvesting fibre-reinforced polymer composites
		19.3.2 Energy harvesting polymer nanocomposites
		19.4 Self-sensing and health monitoring polymer composites
		19.5 Conclusions
		References
20 Tailoring thermo-mechanical properties of hybrid composite-metal bonded joint
	20.1 Introduction
		20.1.1 Aim
		20.1.2 Objectives
	20.2 Literature review
		20.2.1 Carbon nanotube
		20.2.2 Composite-metal adhesively bonded joint
		20.2.3 Effects of CNTs on thermo-mechanical performance
		20.2.4 CNTs dispersion
		20.2.5 Mechanism of joint failure by CTE mismatch
		20.2.6 Analytical calculations
		20.2.7 Methods of thermal strain measurement
	20.3 Specimens manufacturing
		20.3.1 Material
		20.3.2 Specimens manufacturing
	20.4 Testing
		20.4.1 Thermal strain measurement
		20.4.2 Scanning electron microscopy
		20.4.3 Raman spectroscopy
	20.5 Results and discussion
		20.5.1 Coefficient of thermal expansion
		20.5.2 Scanning electron microscopy
		20.5.3 Raman spectroscopy
		20.5.4 Bond deficiency on specimens
	20.6 Conclusion and further work
	References
21 High-performance nanocomposites for strain self-sensing applications in composite joints
	21.1 Introduction
		21.1.1 Structure of carbon nanotubes
		21.1.2 Electromechanical properties
		21.1.3 CNTs for strain sensing
	21.2 Materials and methods
		21.2.1 CNT fabrication
		21.2.2 Sample manufacturing
		21.2.3 Tensile and electrical resistance testing
		21.2.4 Scanning electron microscopy
		21.2.5 Raman spectroscopy
	21.3 Results and discussion
		21.3.1 Carbon nanotubes characterisation
			21.3.2 Strain sensing
	21.4 Conclusion
	21.5 Future work
	Appendix A: Tensile tests
	Appendix B : Load vs displacement curves
	References
Index




نظرات کاربران