دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Yasir Nawab (editor), S.M. Sapuan Sapuan (editor), Khubab Shaker (editor) سری: Woodhead Publishing Series in Composites Science and Engineering ISBN (شابک) : 012821984X, 9780128219904 ناشر: Woodhead Publishing سال نشر: 2021 تعداد صفحات: 390 [384] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Composite Solutions for Ballistics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راه حل های ترکیبی برای بالستیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
محققان دانشگاهی که روی توسعه مواد کامپوزیتی برای حفاظت بالستیک کار میکنند، نیاز به درک عمیقتری از نظریه رفتار مواد در هنگام برخورد بالستیک دارند. کسانی که در صنعت کار می کنند نیز باید ترکیبات کامپوزیت مناسب را انتخاب کنند تا به ویژگی های مورد نظر خود دست یابند تا محصولات کاربردی بسازند. Solutions Composite for Ballistics جنبه های مختلف حفاظت بالستیک، سطوح مختلف آن و مواد و ساختارهای مورد استفاده برای این منظور را پوشش می دهد. تاکید در کتاب بر کاربرد و استفاده از مواد کامپوزیتی برای حفاظت بالستیک است. این فصل ها اطلاعات دقیقی در مورد انواع مختلف رویدادهای ضربه و پیچیدگی مواد برای پاسخ به آن رویدادها ارائه می دهند. ویژگیهای کامپوزیتهای بالستیک و نتایج مدلسازی و شبیهسازی خواننده را قادر میسازد تا مکانیسمهای ضربه را با توجه به تئوری رفتار دینامیکی مواد درک کند. شرح کاملی از شرایط آزمایش نیز ارائه شده است که شامل حسگرها و دستگاههای پرسرعت برای نظارت بر رویدادهای بالستیک است. این کتاب شامل رویکردها و طرحهای دقیقی است که میتواند در تحقیقات آکادمیک برای راهحلهایی برای حفاظت بالستیک در هر دو زمینه تئوری و تجربی، برای یافتن راهحلهایی برای تهدیدات موجود و نسل بعدی پیادهسازی شود. این کتاب یک منبع مرجع ضروری برای دانشمندان و مهندسان مواد، و محققان دانشگاهی و صنعتی که در مواد کامپوزیتی و منسوجات برای حفاظت بالستیک کار میکنند، و همچنین دانشجویان کارشناسی ارشد در رشتههای علوم مواد، نساجی و مهندسی مکانیک خواهد بود. در مورد مبانی مکانیسمهای پاسخ ضربه و راهحلهای مربوطه بحث میکند که مزایا و معایب را برای برنامههای کاربردی نسل بعدی و فعلی پوشش میدهد. به عنوان کامپوزیت های ترکیبی از ضایعات طبیعی روش های انتخاب برای کاربردهای بالستیک و اطلاعات دقیق در مورد استفاده از منسوجات برای ساخت تقویت کننده را مورد بحث قرار می دهد.
Academic researchers who are working on the development of composite materials for ballistic protection need a deeper understanding on the theory of material behavior during ballistic impact. Those working in industry also need to select proper composite constituents, to achieve their desired characteristics to make functional products. Composite Solutions for Ballistics covers the different aspects of ballistic protection, its different levels and the materials and structures used for this purpose. The emphasis in the book is on the application and use of composite materials for ballistic protection. The chapters provide detailed information on the various types of impact events and the complexity of materials to respond to those events. The characteristics of ballistic composites and modelling and simulation results will enable the reader to better understand impact mechanisms according to the theory of dynamic material behavior. A complete description of testing conditions is also given that includes sensors and high-speed devices to monitor ballistic events. The book includes detailed approaches and schemes that can be implemented in academic research into solutions for ballistic protection in both theoretical and experimental fields, to find solutions for existing and next generation threats. The book will be an essential reference resource for materials scientists and engineers, and academic and industrial researchers working in composite materials and textiles for ballistic protection, as well as postgraduate students on materials science, textiles and mechanical engineering courses. Discusses the fundamentals of impact response mechanisms and related solutions covering advantages and disadvantages for both existing and next generation applications Includes various methods for evaluation of ballistic constituents according to economic and environmental criteria, types of green ballistics are considered to enhance sustainable production of applications as well as hybrid composites from natural wastes Discusses selection methodologies for ballistic applications and detailed information on the use of textiles for reinforcement fabrication
Cover Composite Solutions for Ballistics Copyright Contents List of contributors About the editors Preface Acknowledgment Part A Overview of ballistics 1 State-of-the-art review on recent advances and perspectives of ballistic composite materials 1.1 Introduction 1.2 History of ballistics 1.3 Kinds of ballistic protective materials and equipment 1.4 Applications of ballistic study 1.4.1 Evolution of materials 1.4.1.1 Ultrahigh-molecular-weight polyethylene 1.4.1.2 Aramid fibers 1.4.1.3 Kevlar composites 1.4.1.4 Ballistic fiberglass 1.4.1.5 Carbon fiber 1.4.1.6 Natural fibers 1.4.1.7 High-density polyethylene/UHMWPE polymer composite 1.4.1.8 Ceramic fiber 1.4.1.9 Ballistic fabric 1.4.2 Mechanics of ballistics 1.4.2.1 Experimental approach 1.4.2.2 Analytical approaches 1.4.2.3 Numerical modeling approach 1.4.2.4 Empirical methods 1.4.2.5 Combinations of two or more approaches 1.4.2.6 Others Mechanics of Kevlar composites Impact behavior of HDPE/UHMWPE polymer composite 1.4.3 Clinical and forensic study 1.4.3.1 Ballistic response of the bullet 1.4.3.2 Energy transfer characteristics of gunshot wounds 1.4.3.3 Mechanisms of injuries for gunshot Momentum and energy of the projectile Pressure wave and temporary cavitation Yawing, fragmenting, and tumbling Direct damage of tissue Cavitation Bone injuries Head injuries 1.5 Conclusions Acknowledgments References 2 Materials selection for ballistics 2.1 Background 2.2 Ballistic fabrics 2.2.1 Energy dissipation mechanism 2.2.2 Fabric features affecting ballistic performance 2.2.3 Quantification of ballistic fabric performance 2.2.4 Property deterioration due to temperature and ultraviolet radiation 2.2.5 Enhancement of ballistic performance 2.2.6 Three-dimensional woven architecture 2.2.7 Innovative fabric systems 2.3 Laminated composites and integral armor 2.3.1 Integral armor 2.3.1.1 Alumina/aluminum-laminated composite structure 2.3.1.2 Fiber metal laminates 2.3.1.3 Aluminum foam 2.3.2 Flexible composite armor 2.3.2.1 Fabric systems 2.3.2.2 Polymer composites 2.3.2.3 Blunt trauma reduction armor 2.3.3 Nanomaterial systems and futuristic design concepts for ballistics 2.3.3.1 Nanocomposites 2.3.3.2 Ballistic performance of CNTs 2.3.3.3 CNT hybrid composite armor 2.3.3.4 Kevlar/nylon and CNT fibers/nylon composites 2.3.3.5 Inorganic fullerene nanotubes 2.3.3.6 Futuristic design concepts 2.3.3.6.1 Micro-truss armor 2.3.3.6.2 Biomimetic material systems 2.3.3.6.3 Natural fiber composites 2.4 An assessment of composite and hybrid armor systems 2.5 Digest and remarks References 3 Levels of ballistic protection and testing 3.1 General introduction 3.2 Ballistic protective materials 3.3 Ballistic behavior of personal protective equipment 3.4 Levels of personal ballistic protection 3.4.1 NIJ Standard-0101.04—Ballistic Resistance of Personal Body Armor (2001) 3.4.2 NIJ Standard-0101.06—Ballistic Resistance of Body Armor (2008) 3.4.3 NIJ Standard-0101.07—Ballistic Resistance of Body Armor 3.4.4 UK Home Office Scientific Development Branch (HOSDB) standard 3.4.5 VPAM BSW 2006—Ballistic Protective Vest 3.4.6 GOST R 50744-95 Armored Clothing, Classification and General Technical Requirements standard 3.4.7 NATO STANAG 2920 AEP Ed.3 Standards 3.4.8 NIJ Standard-0106.01—Ballistic Helmets (1981) 3.4.9 VPAM HVN 2009 Bullet-resistant helmet with visor and neck guard 3.4.10 NIJ Standard-0108.01—Ballistic Resistant Protective Materials (1985) 3.4.11 VPAM APR 2006—General basis for ballistic material, construction and product testing threat/protection levels 3.4.12 AS/NZS 2343:1997 Standard—Australian and New Zealand standards 3.4.13 German Schutzklasse Standard Edition 2008 3.5 Ballistic testing on personal protective equipment 3.5.1 Body armor system 3.5.1.1 Number of samples 3.5.1.2 Test configuration 3.5.1.3 Analysis 3.5.2 Ballistic helmets 3.5.2.1 Testing requirement 3.5.2.2 Method/setup Ballistic penetration test 3.6 Measurement of V50 performance of personal ballistic armor 3.6.1 MIL-STD-662F—V50 Ballistic Test for Armor 3.6.1.1 Ballistic limit 3.6.1.2 V50 for ballistic helmet 3.6.1.3 V50 ballistic limit for explosive ordnance disposal (EOD) 3.7 Ammunition for PPE ballistic testing 3.7.1 Ammunition component 3.7.1.1 Cartridge Functional type of cartridges Cartridge headstamp Cartridge case type and shape Case composition 3.7.2 Projectile 3.7.2.1 Projectile shape, weight, and jacket 3.8 Summary Acknowledgments References Further reading 4 Personal and structural protection 4.1 Background 4.2 Personal protection 4.2.1 Body armor 4.2.1.1 Background 4.2.1.2 Carrier vest 4.2.1.3 Soft armor panel 4.2.1.4 Hard armor plate 4.2.1.5 Types of body armor/vest American vest European vest Asian vest Police force vest 4.2.1.6 Testing of body armors V50 testing for ballistic vest NIJ testing for ballistic vest 4.2.2 Combat helmet 4.2.2.1 Background 4.2.2.2 Types of combat helmet American helmet British helmet French helmet Australian helmet Russian helmet 4.2.2.3 Testing standards for combat helmets NIJ testing for combat helmet V50 testing for combat helmet 4.2.3 Ballistic boots 4.2.3.1 Spider boot 4.2.3.2 Overboot 4.2.3.3 Testing of ballistic boots 4.2.4 Shields 4.2.4.1 Background 4.2.4.2 Movable shield 4.2.4.3 Handheld shield 4.2.4.4 Testing of ballistic shields 4.2.5 Bomb blanket 4.2.5.1 Testing of bomb blanket 4.3 Structural protection 4.3.1 Ballistic panels 4.3.2 Ballistic doors and windows 4.3.3 Vehicular protection 4.3.3.1 Type of ballistic vehicles Tank Multipurpose, future combat system, expeditionary fighting vehicle, and armored fighting vehicle Armored aircrafts Armored police and civilian vehicles 4.4 Properties required for an armor References Part B Composite solutions 5 Polymer composites 5.1 Introduction 5.2 Matrix in polymer composite 5.3 Reinforcement in polymer composite 5.3.1 Types of reinforcements (material) 5.3.2 Common physical forms of reinforcement 5.4 Polymer composite as advance solutions for ballistic applications 5.4.1 Working principles 5.4.2 Types of materials in ballistic applications 5.4.3 Ballistic performance of composite materials 5.4.4 Composite solutions for ballistic protection 5.4.5 Thermoplastic composites for ballistic applications 5.5 Limitations References 6 Ceramic composites 6.1 Introduction 6.1.1 Ceramic as matrix 6.1.1.1 Melt infiltration process 6.1.1.2 Hot pressing 6.1.1.3 Reaction sintering 6.1.1.4 Chemical vapor infiltration 6.1.1.5 Direct melt oxidation 6.1.1.6 Sol–gel processing 6.1.2 Ceramic as reinforcement 6.1.2.1 Oxide fibers 6.1.2.2 Nonoxide-based fibers 6.2 Alumina-based composite armors 6.3 Silicon carbide–based composite structures 6.4 Boron carbide–based composite structures 6.5 Nanocomposite-based ceramic coatings 6.6 Transparent ceramic systems 6.7 Fracture analysis of ceramic-based composite materials 6.8 Global market of ceramic composite in ballistics 6.9 Limitations in ballistic efficiency of ceramic composite armor 6.10 Conclusion References 7 Composite fabrication and joining 7.1 Introduction 7.2 Composite fabrication techniques 7.2.1 Hand layup 7.2.2 Vacuum resin infusion 7.2.3 Resin transfer molding 7.2.4 Prepregs 7.2.5 Compression molding 7.2.6 Autoclave 7.2.7 Selection of fabrication techniques 7.2.8 Postprocessing of ballistic composites 7.3 Material/structure wise fabrication techniques 7.3.1 Para-aramid composite 7.3.2 Self-reinforced composite 7.3.3 3D woven composites 7.3.4 Hybrid composites 7.4 Joining techniques for ballistic protection 7.4.1 Ceramic–polymer composite joining 7.4.2 Ceramic–metal joining References 8 Use of auxetic material for impact/ballistic applications 8.1 Auxetic materials 8.2 Types of auxetic materials 8.2.1 Naturally occurring auxetic biomaterials 8.2.2 Auxetic polymers 8.3 Commonly used auxetic structures in impact applications 8.3.1 Textile auxetic structures 8.3.1.1 Intrinsic auxetic textile 8.3.1.2 Extrinsic auxetic textile 8.3.1.3 Auxetic yarns 8.3.1.4 Auxetic woven fabrics 8.3.1.5 2D auxetic structure weave design 8.3.1.6 Knitted auxetic fabrics 8.4 Shear thickening fluid (STF) 8.4.1 Mechanism of formation 8.4.2 Composition and fabrication methods of STF 8.4.2.1 Particle-based shear thickening systems Materials and methodology Applications 8.4.2.2 Nonparticle-based shear thickening systems Materials and methodology Applications 8.4.2.3 Sonochemical method Materials and methodology Applications 8.4.3 Characterization of shear thickening fluids 8.4.3.1 Rheological characterization 8.4.3.2 Thermogravimetric analysis (TGA) 8.4.3.3 Transmission electron microscopy (TEM) 8.4.3.4 Scanning electron microscopy (SEM) 8.4.3.5 Dynamic stab test 8.4.3.6 Quasistatic stab tests 8.4.3.7 Flexibility tests and thickness measurements 8.4.4 Applications of STFs in impact/bulletproof applications 8.4.4.1 General application 8.4.4.2 Ballistic-resistant properties References 9 Natural fiber–reinforced composites for ballistic protection 9.1 Introduction 9.1.1 Natural fibers used in ballistic applications 9.2 Natural fiber–reinforced composites 9.3 Ballistics 9.3.1 Ballistic armor 9.3.2 Types of ballistic vest 9.4 Natural fiber composites in ballistic armors 9.5 Advanced research in natural fiber–reinforced composites in ballistic applications 9.6 Thermoplastic matrix material 9.6.1 Powder impregnation 9.6.1.1 Co-weaving and warp-knitting techniques 9.6.1.2 Commingling 9.7 Techniques for the manufacturing of thermoplastic composites 9.7.1 Vacuum forming of thermoplastic composites 9.7.2 Reactive thermoplastic RTM 9.7.3 Compression molding References 10 Composite solutions: existing and next generation 10.1 Introduction and background 10.2 Ballistic threats 10.2.1 What is body armor 10.2.1.1 Ballistic levels 10.3 Recent research trends in ballistic protection 10.3.1 Hard body armor 10.3.2 Soft body armor 10.4 Modeling and simulation 10.4.1 Materials for ballistic protection 10.4.1.1 Structures of fabric for body armor 10.4.1.2 Ballistic protection using thermoplastic composites 10.5 The future trends References Part C Characterization and modeling 11 Mechanical characterization 11.1 Introduction 11.1.1 Impact damage mechanics 11.1.2 Characterization levels 11.2 Reinforcement characterization 11.2.1 Tensile properties 11.2.2 Frictional properties 11.2.3 Yarn pull-out 11.2.4 Fabric puncture resistance 11.3 Matrix characterization 11.3.1 High-speed puncture 11.3.2 Shear strength 11.3.3 Hardness testing 11.4 Fiber–matrix adhesion 11.4.1 Fiber push-out testing 11.4.2 Peel strength 11.4.3 Fracture toughness 11.5 Composite characterization 11.5.1 Tensile testing 11.5.2 Flexural testing 11.5.3 Impact testing 11.5.4 Penetration resistance 11.5.5 Compression testing References 12 Simulation of ballistic composites 12.1 Introduction 12.2 Modeling motivation 12.3 Commercial software and solvers 12.4 Case study 1: simulation of high-velocity ballistic impact 12.4.1 Depth of penetration (DOP) methodology 12.4.1.1 Experimental setup 12.4.2 UHMWPE modeling 12.4.3 Results and discussion 12.5 Case study 2 (effect of deflector composite geometry on blast protection) 12.5.1 Introduction to problem 12.5.2 Design 12.5.3 Methodology 12.5.3.1 Numerical simulations 12.5.3.2 Blast tests 12.5.4 Results and summary 12.5.4.1 Numerical simulation results 12.5.5 Conclusion 12.6 Case study 3 (personal protective boot against mine blasts) 12.6.1 Introduction 12.6.2 Experimental study 12.6.3 Numerical analysis 12.6.3.1 Design 12.6.3.2 Materials 12.6.3.3 Finite element modeling 12.6.3.4 Boundary conditions 12.6.4 Result and analysis 12.6.4.1 Blast loading with C4 12.7 Conclusion 12.8 Summary References 13 Life-cycle assessment of ballistic vest 13.1 Introduction 13.2 General description of LCA 13.2.1 Key features of LCA 13.2.2 Phases of an LCA 13.3 Methodological framework 13.3.1 Definition of goal and scope 13.3.1.1 Goal of the study 13.3.1.2 Scope of the study Function and functional unit System boundaries Data quality requirements Comparisons between systems Critical review considerations 13.3.2 Life cycle inventory analysis 13.3.3 Data collection and calculation procedures 13.3.4 Life cycle impact assessment 13.3.5 Life cycle interpretation 13.3.5.1 Reporting 13.3.6 Critical review 13.3.6.1 Need for critical review 13.3.6.2 Critical review processes 13.3.6.3 Internal expert review 13.3.6.4 External expert review 13.3.6.5 Review by interested parties 13.4 ISO LCA approaches 13.4.1 Cradle-to-grave 13.4.2 Cradle-to-gate 13.4.3 Cradle-to-cradle 13.5 Life cycle energy analysis 13.6 LCA of Kevlar/epoxy ballistic composite 13.6.1 Raw material 13.6.2 Manufacturing 13.6.3 Application/usage 13.6.4 End of life 13.7 Durability of ballistic composites References Index Backcover