ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Composite Solutions for Ballistics

دانلود کتاب راه حل های ترکیبی برای بالستیک

Composite Solutions for Ballistics

مشخصات کتاب

Composite Solutions for Ballistics

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری: Woodhead Publishing Series in Composites Science and Engineering 
ISBN (شابک) : 012821984X, 9780128219904 
ناشر: Woodhead Publishing 
سال نشر: 2021 
تعداد صفحات: 390
[384] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 19 Mb 

قیمت کتاب (تومان) : 51,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Composite Solutions for Ballistics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راه حل های ترکیبی برای بالستیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب راه حل های ترکیبی برای بالستیک

محققان دانشگاهی که روی توسعه مواد کامپوزیتی برای حفاظت بالستیک کار می‌کنند، نیاز به درک عمیق‌تری از نظریه رفتار مواد در هنگام برخورد بالستیک دارند. کسانی که در صنعت کار می کنند نیز باید ترکیبات کامپوزیت مناسب را انتخاب کنند تا به ویژگی های مورد نظر خود دست یابند تا محصولات کاربردی بسازند. Solutions Composite for Ballistics جنبه های مختلف حفاظت بالستیک، سطوح مختلف آن و مواد و ساختارهای مورد استفاده برای این منظور را پوشش می دهد. تاکید در کتاب بر کاربرد و استفاده از مواد کامپوزیتی برای حفاظت بالستیک است. این فصل ها اطلاعات دقیقی در مورد انواع مختلف رویدادهای ضربه و پیچیدگی مواد برای پاسخ به آن رویدادها ارائه می دهند. ویژگی‌های کامپوزیت‌های بالستیک و نتایج مدل‌سازی و شبیه‌سازی خواننده را قادر می‌سازد تا مکانیسم‌های ضربه را با توجه به تئوری رفتار دینامیکی مواد درک کند. شرح کاملی از شرایط آزمایش نیز ارائه شده است که شامل حسگرها و دستگاه‌های پرسرعت برای نظارت بر رویدادهای بالستیک است. این کتاب شامل رویکردها و طرح‌های دقیقی است که می‌تواند در تحقیقات آکادمیک برای راه‌حل‌هایی برای حفاظت بالستیک در هر دو زمینه تئوری و تجربی، برای یافتن راه‌حل‌هایی برای تهدیدات موجود و نسل بعدی پیاده‌سازی شود. این کتاب یک منبع مرجع ضروری برای دانشمندان و مهندسان مواد، و محققان دانشگاهی و صنعتی که در مواد کامپوزیتی و منسوجات برای حفاظت بالستیک کار می‌کنند، و همچنین دانشجویان کارشناسی ارشد در رشته‌های علوم مواد، نساجی و مهندسی مکانیک خواهد بود. در مورد مبانی مکانیسم‌های پاسخ ضربه و راه‌حل‌های مربوطه بحث می‌کند که مزایا و معایب را برای برنامه‌های کاربردی نسل بعدی و فعلی پوشش می‌دهد. به عنوان کامپوزیت های ترکیبی از ضایعات طبیعی روش های انتخاب برای کاربردهای بالستیک و اطلاعات دقیق در مورد استفاده از منسوجات برای ساخت تقویت کننده را مورد بحث قرار می دهد.


توضیحاتی درمورد کتاب به خارجی

Academic researchers who are working on the development of composite materials for ballistic protection need a deeper understanding on the theory of material behavior during ballistic impact. Those working in industry also need to select proper composite constituents, to achieve their desired characteristics to make functional products. Composite Solutions for Ballistics covers the different aspects of ballistic protection, its different levels and the materials and structures used for this purpose. The emphasis in the book is on the application and use of composite materials for ballistic protection. The chapters provide detailed information on the various types of impact events and the complexity of materials to respond to those events. The characteristics of ballistic composites and modelling and simulation results will enable the reader to better understand impact mechanisms according to the theory of dynamic material behavior. A complete description of testing conditions is also given that includes sensors and high-speed devices to monitor ballistic events. The book includes detailed approaches and schemes that can be implemented in academic research into solutions for ballistic protection in both theoretical and experimental fields, to find solutions for existing and next generation threats. The book will be an essential reference resource for materials scientists and engineers, and academic and industrial researchers working in composite materials and textiles for ballistic protection, as well as postgraduate students on materials science, textiles and mechanical engineering courses. Discusses the fundamentals of impact response mechanisms and related solutions covering advantages and disadvantages for both existing and next generation applications Includes various methods for evaluation of ballistic constituents according to economic and environmental criteria, types of green ballistics are considered to enhance sustainable production of applications as well as hybrid composites from natural wastes Discusses selection methodologies for ballistic applications and detailed information on the use of textiles for reinforcement fabrication



فهرست مطالب

Cover
Composite Solutions for Ballistics
Copyright
Contents
List of contributors
About the editors
Preface
Acknowledgment
Part A Overview of ballistics
	1 State-of-the-art review on recent advances and perspectives of ballistic composite materials
		1.1 Introduction
		1.2 History of ballistics
		1.3 Kinds of ballistic protective materials and equipment
		1.4 Applications of ballistic study
			1.4.1 Evolution of materials
				1.4.1.1 Ultrahigh-molecular-weight polyethylene
				1.4.1.2 Aramid fibers
				1.4.1.3 Kevlar composites
				1.4.1.4 Ballistic fiberglass
				1.4.1.5 Carbon fiber
				1.4.1.6 Natural fibers
				1.4.1.7 High-density polyethylene/UHMWPE polymer composite
				1.4.1.8 Ceramic fiber
				1.4.1.9 Ballistic fabric
			1.4.2 Mechanics of ballistics
				1.4.2.1 Experimental approach
				1.4.2.2 Analytical approaches
				1.4.2.3 Numerical modeling approach
				1.4.2.4 Empirical methods
				1.4.2.5 Combinations of two or more approaches
				1.4.2.6 Others
					Mechanics of Kevlar composites
					Impact behavior of HDPE/UHMWPE polymer composite
			1.4.3 Clinical and forensic study
				1.4.3.1 Ballistic response of the bullet
				1.4.3.2 Energy transfer characteristics of gunshot wounds
				1.4.3.3 Mechanisms of injuries for gunshot
					Momentum and energy of the projectile
					Pressure wave and temporary cavitation
					Yawing, fragmenting, and tumbling
					Direct damage of tissue
					Cavitation
					Bone injuries
					Head injuries
		1.5 Conclusions
		Acknowledgments
		References
	2 Materials selection for ballistics
		2.1 Background
		2.2 Ballistic fabrics
			2.2.1 Energy dissipation mechanism
			2.2.2 Fabric features affecting ballistic performance
			2.2.3 Quantification of ballistic fabric performance
			2.2.4 Property deterioration due to temperature and ultraviolet radiation
			2.2.5 Enhancement of ballistic performance
			2.2.6 Three-dimensional woven architecture
			2.2.7 Innovative fabric systems
		2.3 Laminated composites and integral armor
			2.3.1 Integral armor
				2.3.1.1 Alumina/aluminum-laminated composite structure
				2.3.1.2 Fiber metal laminates
				2.3.1.3 Aluminum foam
			2.3.2 Flexible composite armor
				2.3.2.1 Fabric systems
				2.3.2.2 Polymer composites
				2.3.2.3 Blunt trauma reduction armor
			2.3.3 Nanomaterial systems and futuristic design concepts for ballistics
				2.3.3.1 Nanocomposites
				2.3.3.2 Ballistic performance of CNTs
				2.3.3.3 CNT hybrid composite armor
				2.3.3.4 Kevlar/nylon and CNT fibers/nylon composites
				2.3.3.5 Inorganic fullerene nanotubes
				2.3.3.6 Futuristic design concepts
					2.3.3.6.1 Micro-truss armor
					2.3.3.6.2 Biomimetic material systems
					2.3.3.6.3 Natural fiber composites
		2.4 An assessment of composite and hybrid armor systems
		2.5 Digest and remarks
		References
	3 Levels of ballistic protection and testing
		3.1 General introduction
		3.2 Ballistic protective materials
		3.3 Ballistic behavior of personal protective equipment
		3.4 Levels of personal ballistic protection
			3.4.1 NIJ Standard-0101.04—Ballistic Resistance of Personal Body Armor (2001)
			3.4.2 NIJ Standard-0101.06—Ballistic Resistance of Body Armor (2008)
			3.4.3 NIJ Standard-0101.07—Ballistic Resistance of Body Armor
			3.4.4 UK Home Office Scientific Development Branch (HOSDB) standard
			3.4.5 VPAM BSW 2006—Ballistic Protective Vest
			3.4.6 GOST R 50744-95 Armored Clothing, Classification and General Technical Requirements standard
			3.4.7 NATO STANAG 2920 AEP Ed.3 Standards
			3.4.8 NIJ Standard-0106.01—Ballistic Helmets (1981)
			3.4.9 VPAM HVN 2009 Bullet-resistant helmet with visor and neck guard
			3.4.10 NIJ Standard-0108.01—Ballistic Resistant Protective Materials (1985)
			3.4.11 VPAM APR 2006—General basis for ballistic material, construction and product testing threat/protection levels
			3.4.12 AS/NZS 2343:1997 Standard—Australian and New Zealand standards
			3.4.13 German Schutzklasse Standard Edition 2008
		3.5 Ballistic testing on personal protective equipment
			3.5.1 Body armor system
				3.5.1.1 Number of samples
				3.5.1.2 Test configuration
				3.5.1.3 Analysis
			3.5.2 Ballistic helmets
				3.5.2.1 Testing requirement
				3.5.2.2 Method/setup
					Ballistic penetration test
		3.6 Measurement of V50 performance of personal ballistic armor
			3.6.1 MIL-STD-662F—V50 Ballistic Test for Armor
				3.6.1.1 Ballistic limit
				3.6.1.2 V50 for ballistic helmet
				3.6.1.3 V50 ballistic limit for explosive ordnance disposal (EOD)
		3.7 Ammunition for PPE ballistic testing
			3.7.1 Ammunition component
				3.7.1.1 Cartridge
					Functional type of cartridges
					Cartridge headstamp
					Cartridge case type and shape
					Case composition
			3.7.2 Projectile
				3.7.2.1 Projectile shape, weight, and jacket
		3.8 Summary
		Acknowledgments
		References
		Further reading
	4 Personal and structural protection
		4.1 Background
		4.2 Personal protection
			4.2.1 Body armor
				4.2.1.1 Background
				4.2.1.2 Carrier vest
				4.2.1.3 Soft armor panel
				4.2.1.4 Hard armor plate
				4.2.1.5 Types of body armor/vest
					American vest
					European vest
					Asian vest
					Police force vest
				4.2.1.6 Testing of body armors
					V50 testing for ballistic vest
					NIJ testing for ballistic vest
			4.2.2 Combat helmet
				4.2.2.1 Background
				4.2.2.2 Types of combat helmet
					American helmet
					British helmet
					French helmet
					Australian helmet
					Russian helmet
				4.2.2.3 Testing standards for combat helmets
					NIJ testing for combat helmet
					V50 testing for combat helmet
			4.2.3 Ballistic boots
				4.2.3.1 Spider boot
				4.2.3.2 Overboot
				4.2.3.3 Testing of ballistic boots
			4.2.4 Shields
				4.2.4.1 Background
				4.2.4.2 Movable shield
				4.2.4.3 Handheld shield
				4.2.4.4 Testing of ballistic shields
			4.2.5 Bomb blanket
				4.2.5.1 Testing of bomb blanket
		4.3 Structural protection
			4.3.1 Ballistic panels
			4.3.2 Ballistic doors and windows
			4.3.3 Vehicular protection
				4.3.3.1 Type of ballistic vehicles
					Tank
					Multipurpose, future combat system, expeditionary fighting vehicle, and armored fighting vehicle
					Armored aircrafts
					Armored police and civilian vehicles
		4.4 Properties required for an armor
		References
Part B Composite solutions
	5 Polymer composites
		5.1 Introduction
		5.2 Matrix in polymer composite
		5.3 Reinforcement in polymer composite
			5.3.1 Types of reinforcements (material)
			5.3.2 Common physical forms of reinforcement
		5.4 Polymer composite as advance solutions for ballistic applications
			5.4.1 Working principles
			5.4.2 Types of materials in ballistic applications
			5.4.3 Ballistic performance of composite materials
			5.4.4 Composite solutions for ballistic protection
			5.4.5 Thermoplastic composites for ballistic applications
		5.5 Limitations
		References
	6 Ceramic composites
		6.1 Introduction
			6.1.1 Ceramic as matrix
				6.1.1.1 Melt infiltration process
				6.1.1.2 Hot pressing
				6.1.1.3 Reaction sintering
				6.1.1.4 Chemical vapor infiltration
				6.1.1.5 Direct melt oxidation
				6.1.1.6 Sol–gel processing
			6.1.2 Ceramic as reinforcement
				6.1.2.1 Oxide fibers
				6.1.2.2 Nonoxide-based fibers
		6.2 Alumina-based composite armors
		6.3 Silicon carbide–based composite structures
		6.4 Boron carbide–based composite structures
		6.5 Nanocomposite-based ceramic coatings
		6.6 Transparent ceramic systems
		6.7 Fracture analysis of ceramic-based composite materials
		6.8 Global market of ceramic composite in ballistics
		6.9 Limitations in ballistic efficiency of ceramic composite armor
		6.10 Conclusion
		References
	7 Composite fabrication and joining
		7.1 Introduction
		7.2 Composite fabrication techniques
			7.2.1 Hand layup
			7.2.2 Vacuum resin infusion
			7.2.3 Resin transfer molding
			7.2.4 Prepregs
			7.2.5 Compression molding
			7.2.6 Autoclave
			7.2.7 Selection of fabrication techniques
			7.2.8 Postprocessing of ballistic composites
		7.3 Material/structure wise fabrication techniques
			7.3.1 Para-aramid composite
			7.3.2 Self-reinforced composite
			7.3.3 3D woven composites
			7.3.4 Hybrid composites
		7.4 Joining techniques for ballistic protection
			7.4.1 Ceramic–polymer composite joining
			7.4.2 Ceramic–metal joining
		References
	8 Use of auxetic material for impact/ballistic applications
		8.1 Auxetic materials
		8.2 Types of auxetic materials
			8.2.1 Naturally occurring auxetic biomaterials
			8.2.2 Auxetic polymers
		8.3 Commonly used auxetic structures in impact applications
			8.3.1 Textile auxetic structures
				8.3.1.1 Intrinsic auxetic textile
				8.3.1.2 Extrinsic auxetic textile
				8.3.1.3 Auxetic yarns
				8.3.1.4 Auxetic woven fabrics
				8.3.1.5 2D auxetic structure weave design
				8.3.1.6 Knitted auxetic fabrics
		8.4 Shear thickening fluid (STF)
			8.4.1 Mechanism of formation
			8.4.2 Composition and fabrication methods of STF
				8.4.2.1 Particle-based shear thickening systems
					Materials and methodology
					Applications
				8.4.2.2 Nonparticle-based shear thickening systems
					Materials and methodology
					Applications
				8.4.2.3 Sonochemical method
					Materials and methodology
					Applications
			8.4.3 Characterization of shear thickening fluids
				8.4.3.1 Rheological characterization
				8.4.3.2 Thermogravimetric analysis (TGA)
				8.4.3.3 Transmission electron microscopy (TEM)
				8.4.3.4 Scanning electron microscopy (SEM)
				8.4.3.5 Dynamic stab test
				8.4.3.6 Quasistatic stab tests
				8.4.3.7 Flexibility tests and thickness measurements
			8.4.4 Applications of STFs in impact/bulletproof applications
				8.4.4.1 General application
				8.4.4.2 Ballistic-resistant properties
		References
	9 Natural fiber–reinforced composites for ballistic protection
		9.1 Introduction
			9.1.1 Natural fibers used in ballistic applications
		9.2 Natural fiber–reinforced composites
		9.3 Ballistics
			9.3.1 Ballistic armor
			9.3.2 Types of ballistic vest
		9.4 Natural fiber composites in ballistic armors
		9.5 Advanced research in natural fiber–reinforced composites in ballistic applications
		9.6 Thermoplastic matrix material
			9.6.1 Powder impregnation
				9.6.1.1 Co-weaving and warp-knitting techniques
				9.6.1.2 Commingling
		9.7 Techniques for the manufacturing of thermoplastic composites
			9.7.1 Vacuum forming of thermoplastic composites
			9.7.2 Reactive thermoplastic RTM
			9.7.3 Compression molding
		References
	10 Composite solutions: existing and next generation
		10.1 Introduction and background
		10.2 Ballistic threats
			10.2.1 What is body armor
				10.2.1.1 Ballistic levels
		10.3 Recent research trends in ballistic protection
			10.3.1 Hard body armor
			10.3.2 Soft body armor
		10.4 Modeling and simulation
			10.4.1 Materials for ballistic protection
				10.4.1.1 Structures of fabric for body armor
				10.4.1.2 Ballistic protection using thermoplastic composites
		10.5 The future trends
		References
Part C Characterization and modeling
	11 Mechanical characterization
		11.1 Introduction
			11.1.1 Impact damage mechanics
			11.1.2 Characterization levels
		11.2 Reinforcement characterization
			11.2.1 Tensile properties
			11.2.2 Frictional properties
			11.2.3 Yarn pull-out
			11.2.4 Fabric puncture resistance
		11.3 Matrix characterization
			11.3.1 High-speed puncture
			11.3.2 Shear strength
			11.3.3 Hardness testing
		11.4 Fiber–matrix adhesion
			11.4.1 Fiber push-out testing
			11.4.2 Peel strength
			11.4.3 Fracture toughness
		11.5 Composite characterization
			11.5.1 Tensile testing
			11.5.2 Flexural testing
			11.5.3 Impact testing
			11.5.4 Penetration resistance
			11.5.5 Compression testing
		References
	12 Simulation of ballistic composites
		12.1 Introduction
		12.2 Modeling motivation
		12.3 Commercial software and solvers
		12.4 Case study 1: simulation of high-velocity ballistic impact
			12.4.1 Depth of penetration (DOP) methodology
				12.4.1.1 Experimental setup
			12.4.2 UHMWPE modeling
			12.4.3 Results and discussion
		12.5 Case study 2 (effect of deflector composite geometry on blast protection)
			12.5.1 Introduction to problem
			12.5.2 Design
			12.5.3 Methodology
				12.5.3.1 Numerical simulations
				12.5.3.2 Blast tests
			12.5.4 Results and summary
				12.5.4.1 Numerical simulation results
			12.5.5 Conclusion
		12.6 Case study 3 (personal protective boot against mine blasts)
			12.6.1 Introduction
			12.6.2 Experimental study
			12.6.3 Numerical analysis
				12.6.3.1 Design
				12.6.3.2 Materials
				12.6.3.3 Finite element modeling
				12.6.3.4 Boundary conditions
			12.6.4 Result and analysis
				12.6.4.1 Blast loading with C4
		12.7 Conclusion
		12.8 Summary
		References
	13 Life-cycle assessment of ballistic vest
		13.1 Introduction
		13.2 General description of LCA
			13.2.1 Key features of LCA
			13.2.2 Phases of an LCA
		13.3 Methodological framework
			13.3.1 Definition of goal and scope
				13.3.1.1 Goal of the study
				13.3.1.2 Scope of the study
					Function and functional unit
					System boundaries
					Data quality requirements
					Comparisons between systems
					Critical review considerations
			13.3.2 Life cycle inventory analysis
			13.3.3 Data collection and calculation procedures
			13.3.4 Life cycle impact assessment
			13.3.5 Life cycle interpretation
				13.3.5.1 Reporting
			13.3.6 Critical review
				13.3.6.1 Need for critical review
				13.3.6.2 Critical review processes
				13.3.6.3 Internal expert review
				13.3.6.4 External expert review
				13.3.6.5 Review by interested parties
		13.4 ISO LCA approaches
			13.4.1 Cradle-to-grave
			13.4.2 Cradle-to-gate
			13.4.3 Cradle-to-cradle
		13.5 Life cycle energy analysis
		13.6 LCA of Kevlar/epoxy ballistic composite
			13.6.1 Raw material
			13.6.2 Manufacturing
			13.6.3 Application/usage
			13.6.4 End of life
		13.7 Durability of ballistic composites
		References
Index
Backcover




نظرات کاربران