دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Amit Sachdeva, Pramod Singh, Hee Woo Rhee سری: ISBN (شابک) : 9781003080633, 9780367490768 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: [279] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب Composite Materials: Properties, Characterisation, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد مرکب: خواص، خصوصیات و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب شرح عمیقی از سنتز، خواص و تکنیکهای مختلف مشخصسازی مورد استفاده برای مطالعه مواد کامپوزیت ارائه میدهد. همچنین کاربردها و آزمایشهای شبیهسازی این مواد پیشرفته را پوشش میدهد. این کتاب با هدف متخصصان و محققان صنعت ارائه میکند. دانش کامل خوانندگان از مبانی و همچنین تکنیک های سطح پیشرفته مربوط به خصوصیات، توسعه و کاربردهای مواد مرکب "--
"This book provides an in-depth description of the synthesis, properties, and various characterisation techniques used for the study of composite materials. It also covers applications and simulation tests of these advanced materials. Aimed at industry professionals and researchers, this book offers readers thorough knowledge of the fundamentals as well as advanced level techniques involved in composite material characterization, development, and applications"--
Cover Half Title Title Page Copyright Page Table of Contents Preface Editor Contributors Chapter 1: Introduction to Composite Materials: Nanocomposites and their Potential Applications 1.1 Introduction 1.2 Applications of Nanocomposites in the Biomedical Domain 1.3 Applications of Nanocomposites in the Environmental Domain 1.4 Applications of Nanocomposites in the Agricultural Domain 1.5 Perspectives and Conclusions Acknowledgment References Chapter 2: Biocomposites and Nanocomposites 2.1 Introduction 2.2 Categories of Natural Fiber Reinforcements 2.2.1 Bast Fiber 2.2.1.1 Flax 2.2.1.2 Hemp 2.2.1.3 Jute 2.2.1.4 Kenaf 2.2.2 Leaf Fiber 2.2.2.1 Pineapple 2.2.2.2 Abaca 2.2.2.3 Sisal 2.2.3 Fruit Fiber 2.2.3.1 Coir 2.2.4 Straw Fiber 2.2.4.1 Corn 2.2.4.2 Wheat 2.2.5 Seed Fiber 2.2.5.1 Cotton 2.2.5.2 Kapok 2.2.6 Cane, Grass, and Reed Fiber 2.2.6.1 Bamboo 2.2.6.2 Sugarcane Bagasse 2.3 Categories of Biopolymers 2.3.1 Biopolymers Extracted from Biomass 2.2.3.1 Polysaccharides 2.2.3.2 Proteins 2.2.3.3 Lipids 2.3.2 Biopolymers Synthesized from Bio-Derived Monomers 2.3.2.1 Polylactide 2.3.2.2 Succinic Polymers 2.3.2.3 Bio-polyethylene 2.3.2.4 Bio-based Poly(Ethylene Terephthalate) and Poly(Trimethylene Terephthalate) 2.3.2.5 Bio-based Polyamides 2.3.3 Biopolymers Produced from Microorganisms 2.3.3.1 Polyhydroxyalkanoates 2.3.3.2 Poly-glutamic Acid 2.4 Types of Nano Filler Reinforcements from Natural Fiber 2.4.1 Cellulose Nanocrystal 2.4.2 Cellulose Nanofiber 2.5 Conclusion References Chapter 3: Properties of Composite Materials 3.1 Introduction 3.2 Properties of Polymer-Matrix Composites 3.2.1 Electrical Properties of Polymer Composites 3.2.2 Mechanical Properties of Polymer Composites 3.3 Properties of Ceramic-Matrix Composites 3.3.1 Electrical Properties of Ceramic-Matrix Composites 3.3.2 Mechanical Properties of Ceramic-Matrix Composites 3.4 Properties of Metal-Matrix Composites 3.5 Properties of Composite Materials used in Energy Storage/Conversion Devices 3.6 Conclusions References Chapter 4: Synthesis of a Hybrid Self-Cleaning Coating System for Glass 4.1 Introduction 4.2 Materials and Experimental Procedure 4.2.1 Raw Materials 4.2.2 Synthesis of Self-Cleaning Coating 4.2.3 Characterization and Testing(s) 4.3 Results and Discussion 4.3.1 Water Contact Angle of Coating 4.3.2 Surface Morphology 4.3.3 Anti-Fog Properties 4.3.4 Self-Cleaning Analysis 4.3.5 Adhesion Properties 4.3.6 Self-Cleaning Outdoors 4.4 Conclusion(s) Acknowledgments References Chapter 5: Experimental and Characterization Techniques 5.1 Samples Studied 5.2 Materials Used 5.3 Sample Preparation 5.3.1 Thin Film Deposition Techniques 5.3.1.1 Spin coating 5.3.1.2 Doctor’s blade 5.3.2 Synthesis of Photoactive Layers Based on Perovskite Materials 5.3.2.1 Solution-Processed Two-Step Method 5.3.2.2 Solution-Processed One-Step Method 5.3.3 Synthesis of Dye and Perovskite-Based Sensitizers and Electrolytes 5.3.3.1 Extraction of Pigments from Natural Dyes and Preparation of Dye-Sensitizer Solutions 5.3.3.2 Synthesis of Perovskite-Based Sensitizers 5.4 Preparation of Electrolyte Solution 5.5 Fabrication of Dye-Sensitized Solar Cells 5.6 Characterizations 5.6.1 X-Ray Diffraction 5.6.1.1 X-Ray Diffraction Data Analysis 5.6.2 Raman Spectroscopy 5.6.3 UV-Visible Spectroscopy 5.6.4 Scanning Electron Microscope and Energy-dispersive X-ray spectroscopy 5.6.4.1 Working of an SEM Instrument 5.6.4.2 Energy-Dispersive X-ray Spectroscopy 5.6.4.3 Benefits of EDX Analysis 5.6.5 Transmission Electron Microscope 5.6.6 J-V Characteristics 5.6.6.1 Short Circuit Current (I sc) 5.6.6.2 Open Circuit Voltage (V oc) 5.6.6.3 Maximum Power of Solar Cell (P max) 5.6.6.4 Fill Factor (FF) 5.6.6.5 Efficiency (η) Reference Chapter 6: Electrical characterization of electro-Ceramics 6.1 Introduction 6.2 Ferroelectricity 6.3 Crystal Symmetry of Ferroelectric Materials 6.4 Piezoelectricity 6.4.1 Techniques of Piezoelectricity 6.4.2 Piezoelectric Parameters and Their Relations 6.5 Pyroelectricity 6.6 Experimental Techniques for Characterization of Materials 6.6.1 Structural Characterization 6.6.1.1 X-ray Diffraction (XRD) 6.6.1.2 Utility of the XRD Pattern 6.6.2 Scanning Electron Microscopy 6.6.2.1 Electron Microscope 6.6.2.2 Working Principle of SEM 6.6.3 Transmission Electron Microscopy 6.6.4 Density Measurement 6.7 Electrical Characterization 6.7.1 Dielectric Studies 6.7.2 Complex Permittivity 6.7.2.1 Phasor diagram 6.7.2.2 Frequency Dependence of Permittivity 6.7.2.3 Temperature Dependence of Permittivity 6.7.2.4 Measurement of Dielectric Parameters 6.7.3 Electrical Conduction 6.7.3.1 Mechanism of Electrical Conduction in Dielectrics 6.7.4 Ionic Conductivity 6.7.5 Electrical Conductivity 6.7.5.1 Conductivity Measurement 6.7.6 Impedance Studies 6.7.6.1 Impedance Measurement 6.8 Ferroelectric Studies 6.8.1 Sawyer–Tower Circuit 6.8.1.1 P-E Hysteresis Measurement 6.8.1.2 Poling d 33 Measurement 6.8.1.5 Relaxor Ferroelectrics 6.8.1.6 Multiferroic ferroelectric 6.9 Summary References Chapter 7: Thermal Characterization of Composites 7.1 What Is Thermal Analysis and Why Is it Essential? 7.2 Differential Scanning Calorimetry 7.2.1 Heat Flux DSC 7.2.2 Power Compensation DSC 7.3 Thermogravimetric Analysis 7.4 Di-electric Analysis 7.5 Thermo-mechanical Analysis 7.6 Dynamic Mechanical Analysis References Chapter 8: Mechanical Characterization Techniques for Composite Materials 8.1 Introduction 8.2 Mechanical Characterization Techniques 8.2.1 Tensile Testing 8.2.2 Flexural Testing 8.2.3 Impact Testing 8.2.4 Hardness Test 8.2.5 Industrial Application of Mechanical Characterization Techniques 8.3 Conclusions References Chapter 9: Humidity Sensor Based on Alum–Fly Ash Composite 9.1 Introduction 9.2 Experimental 9.2.1 Complex Impedance Spectroscopy 9.3 Results and Discussion 9.3.1 Electrical 9.3.1.1 Complex Impedance Spectroscopy 9.3.1.2 Temperature Dependence of Conductivity 9.3.2 Structural 9.3.2.1 Scanning Electron Microscopy 9.3.2.2 Infrared Spectroscopy 9.3.2.3 X-Ray Diffraction 9.3.3 Humidity Sensor 9.4 Conclusion Acknowledgment References Chapter 10: Applications of Graphene-based Composite Materials 10.1 Introduction 10.2 Photonic Applications of Graphene-based Composites 10.2.1 Graphene-Polymer Composites 10.2.1.1 Graphene-Polymer Composites for Photosensor Applications 10.2.1.2 Graphene-Polymer Composites for Solar Cell Applications 10.2.1.3 Graphene-Polymer Composites for Lighting Applications 10.2.1.4 Graphene-Polymer Composites for Biological Applications 10.2.2 Graphene–Quantum Dot Composites 10.2.2.1 Graphene–Quantum Dot Composites for Photosensor Applications 10.2.2.2 Graphene–Quantum Dot Composites for Solar Cell Applications 10.2.2.3 Graphene–Quantum Dot Composites for Lighting Applications 10.2.2.4 Graphene–Quantum Dot Composites for Biological Applications 10.2.3 Graphene Metal Oxide Composites 10.2.3.1 Graphene–Metal Oxide Composites for Photosensor Applications 10.2.3.2 Graphene–Metal Oxide Composites for Solar Cell Applications 10.2.3.3 Graphene–Metal Oxide Composites for Lighting Applications 10.2.3.4 Graphene–Metal Oxide Composites for Biological Applications 10.3 Future Photonics-Related Applications of Graphene-based Composites 10.4 Conclusion Acknowledgments References Chapter 11: Low Power Ge-Si0.7 Ge0.3 nJLTFET and pJLTFET Design and Characterization in Sub-20 nm Technology Node 11.1 Introduction 11.2 Device Structures and Dimensions 11.3 Subthreshold Performance Parameters 11.4 Results and Discussion 11.4.1 Temperature Analysis 11.5 Conclusion References Chapter 12: Influence of Moisture Uptake on the Mechanical Properties of Natural Fiber-Reinforced Polymer Composites 12.1 Introduction 12.2 Moisture Uptake Behavior of Natural Fibers 12.3 Models Used to Study the Moisture Uptake Behavior of Natural Fiber-Reinforced Polymer Composites 12.4 Effect of Moisture Uptake on Mechanical Properties 12.5 Conclusion References Chapter 13: Exploring the Potential of Nanotechnology in Agriculture: Current Research and Future Prospects 13.1 Introduction 13.2 Multifaceted Role of Nanotools and their Potential Applications 13.2.1 Nanoparticles 13.2.1.1 Silicon Nanoparticles 13.2.1.2 Carbon Nanoparticles 13.2.1.3 Copper Nanoparticles 13.2.1.4 Silver Nanoparticles 13.2.1.5 Titanium Nanoparticles 13.2.2 Quantum Dots 13.2.3 Nanorods 13.2.4 Nanocapsules 13.3 Nanomaterials and Nanosystems in Sustainable Agriculture 13.3.1 Nano Pesticides 13.3.2 Nanofertilizers 13.3.3 Nano Biosensors 13.3.3.1 Nano Barcodes 13.4 New Vistas of Nanotechnology 13.4.1 Cellulose Nanofibers 13.4.2 Nanofabricated Xylem Vessels 13.4.3 Nano-photocatalysts 13.5 Current Scenario of Nanotechnology in India 13.6 Future Prospects of Nanotechnology in Agriculture 13.7 Conclusion References Chapter 14: Nanostructuring of Materials by Severe Deformation Processes 14.1 Introduction 14.2 What are Nanostructured Materials? 14.3 Methods of Severe Plastic Deformation 14.3.1 Severe Plastic Deformation Techniques 14.3.1.1 Equal Channel Angular Pressing 14.3.1.2 High-Pressure Torsion 14.3.2 Accumulative Roll Bonding 14.3.2.1 Multi-Axial Forging 14.4 Formation of Other Nanostructures by SPD 14.5 Properties of Nanostructured SPD Materials 14.5.1 Strength and Ductility 14.5.2 Corrosion 14.6 Applications 14.7 Summary References Index A B C D E F G H J K L M N P Q R S T V X Z