دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Sumit Sharma
سری:
ISBN (شابک) : 0367687550, 9780367687557
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 536
[559]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 Mb
در صورت تبدیل فایل کتاب Composite Materials: Mechanics, Manufacturing and Modeling به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد کامپوزیت: مکانیک، ساخت و مدل سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مواد کامپوزیت کاربردهای متنوعی در زمینههایی از جمله هوافضا، خودروسازی، معماری، انرژی، دریایی و نظامی پیدا میکنند. این کتاب درسی جامع سه جنبه مهم از جمله ساخت، مکانیک و تحلیل مکانیکی دینامیکی کامپوزیت ها را مورد بحث قرار می دهد.
کتاب درسی به طور جامع مفاهیم اساسی کامپوزیت ها، تکنیک های ساخت و مباحث پیشرفته از جمله پیشرفت در مواد کامپوزیت در زمینه های مختلف، رفتار ویسکوالاستیک کامپوزیت ها، چقرمگی کامپوزیت ها و نانو مکانیک را ارائه می کند. کامپوزیت ها در یک حجم موضوعاتی مانند کامپوزیت های زمینه پلیمری، کامپوزیت های زمینه فلزی، کامپوزیت های زمینه سرامیکی، رفتار میکرومکانیکی یک لایه، میکرومکانیک و نانو مکانیک به تفصیل مورد بحث قرار گرفته است.
با هدف دانشجویان ارشد و کارشناسی ارشد. برای درس مواد کامپوزیت در زمینه های مهندسی مکانیک، مهندسی خودرو و مهندسی الکترونیک، این کتاب:
Composite materials find diverse applications in areas including aerospace, automotive, architecture, energy, marine and military. This comprehensive textbook discusses three important aspects including manufacturing, mechanics and dynamic mechanical analysis of composites.
The textbook comprehensively presents fundamental concepts of composites, manufacturing techniques and advanced topics including as advances in composite materials in various fields, viscoelastic behavior of composites, toughness of composites and Nano mechanics of composites in a single volume. Topics such as polymer matrix composites, metal matrix composites, ceramic matrix composites, micromechanical behavior of a lamina, micromechanics and nanomechanics are discussed in detail.
Aimed at senior undergraduate and graduate students for a course on composite materials in the fields of mechanical engineering, automobile engineering and electronics engineering, this book:
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Author Chapter 1 Introduction 1.1 What Is a Composite? 1.2 Why Composites? 1.3 History of Composites 1.4 Classification of Composites 1.4.1 Fiber-Reinforced Composites 1.4.2 Laminated Composites 1.4.2.1 Bimetals 1.4.2.2 Clad Metals 1.4.2.3 Laminated Glass 1.4.2.4 Plastic-Based Laminates 1.4.3 Particulate Composites 1.4.3.1 Nonmetallic Particles in Nonmetallic Matrix 1.4.3.2 Metallic Particles in Nonmetallic Matrix 1.4.3.3 Metallic Particles in Metallic Matrix 1.4.3.4 Nonmetallic Particles in Metallic Matrix 1.4.4 Combination of Composites 1.5 Nanomaterials 1.6 Applications of Composite Materials 1.6.1 Aerospace Applications 1.6.2 Missile Applications 1.6.3 Launch Vehicle Applications 1.6.4 Railways 1.6.5 Sports Equipment 1.6.6 Automotives 1.6.7 Infrastructure 1.6.8 Medical Applications 1.6.9 Renewables References Chapter 2 Materials 2.1 Fibers 2.2 Types of Fibers 2.3 Natural Fibers 2.3.1 Silk Fiber 2.3.2 Wool Fiber 2.3.3 Spider Silk 2.3.4 Sinew Fiber 2.3.5 Camel Hair 2.3.6 Cotton Fiber 2.3.7 Jute Fiber 2.3.8 Kenaf Fiber 2.3.9 Hemp Fiber 2.3.10 Flax Fiber 2.3.11 Ramie Fiber 2.3.12 Sisal Fiber 2.3.13 Bamboo Fiber 2.3.14 Maize (Corn) Fiber 2.3.15 Coir Fiber 2.3.16 Banana Fiber 2.3.17 Kapok Fiber 2.3.18 Abaca Fiber 2.3.19 Raffia Palm Fiber 2.3.20 Sugarcane Fiber 2.3.21 Asbestos Fiber 2.3.22 Glass Wool 2.3.23 Rock Wool 2.3.24 Ceramic Wool 2.4 Advanced Fibers 2.4.1 Boron Fiber 2.4.2 Carbon Fiber 2.4.2.1 Fabrication of C Fiber Using PAN 2.4.2.2 Fabrication of C Fiber Using Pitch 2.4.3 Glass Fiber 2.4.4 Aramid (Kevlar) Fiber 2.5 Woven Fabric 2.6 Matrices 2.6.1 Polymer Matrix Composite 2.6.2 Metal Matrix Composites 2.6.3 Ceramic Matrix Composites 2.6.4 Carbon–Carbon Composites 2.7 Fiber Surface Treatment 2.7.1 Graphite Fiber Treatment 2.7.2 Glass Fiber Treatment 2.7.3 Polymer Fiber Treatment 2.8 Fiber Content, Density, and Void Content 2.9 Load Transfer Mechanism Reference Chapter 3 Manufacturing Techniques 3.1 Polymer Matrix Composites 3.1.1 Thermoset Matrix Composites 3.1.1.1 Hand LayUp and Spray Techniques 3.1.1.2 Filament Winding 3.1.1.3 Autoclave Curing 3.1.1.4 Vacuum Bagging Process 3.1.1.5 Pultrusion 3.1.1.6 Resin Transfer Molding (RTM) 3.1.2 Thermoplastic Matrix Composites 3.1.2.1 Film Stacking 3.1.2.2 Diaphragm Forming 3.1.2.3 Thermoplastic Tape Laying 3.1.2.4 Sheet Molding Compound 3.2 Metal Matrix Composites 3.2.1 Liquid-State Processes 3.2.1.1 Casting or Liquid Infiltration 3.2.1.2 Squeeze Casting 3.2.1.3 Centrifugal Casting 3.2.1.4 Spray Forming 3.2.2 Solid-State Processes 3.2.2.1 Diffusion Bonding 3.2.2.2 Deformation Processing 3.2.2.3 Powder Processing 3.2.2.4 Sinter Forging 3.2.2.5 Deposition Techniques 3.2.3 In Situ Processes 3.3 Ceramic Matrix Composites 3.3.1 Cold Pressing and Sintering 3.3.2 Hot Pressing 3.3.3 Reaction Bonding 3.3.4 Infiltration 3.3.4.1 Liquid Infiltration 3.3.4.2 Gaseous Infiltration 3.3.5 Polymer Infiltration and Pyrolysis 3.4 Miscellaneous Techniques 3.4.1 Resin Film Infusion 3.4.2 Elastic Reservoir Molding 3.4.3 Tube Rolling 3.4.4 Compocasting 3.4.5 Spark Plasma Sintering 3.4.6 Vortex Addition Technique 3.4.7 Pressureless Infiltration Process 3.4.8 Ultrasonic Infiltration 3.4.9 Chemical Vapor Deposition 3.4.10 Physical Vapor Deposition 3.4.10.1 Conventional Sputtering 3.4.10.2 Ion Beam Sputtering 3.5 Basics of Curing 3.5.1 Degree of Curing 3.5.2 Curing Cycle 3.5.3 Viscosity 3.5.4 Resin Flow 3.5.5 Consolidation 3.5.6 Gel-Time Test 3.5.7 Shrinkage 3.5.8 Voids References Chapter 4 Mechanics of Composites 4.1 Laminae 4.2 Laminates 4.3 Tensors 4.4 Deformation 4.5 Strain 4.6 Stress 4.7 Equilibrium 4.8 Boundary Conditions 4.8.1 Tractions 4.8.2 Free Surface Boundary Conditions 4.9 Continuity Conditions 4.9.1 Displacement Continuity 4.9.2 Traction Continuity 4.10 Compatibility 4.11 Constitutive Equations 4.12 Plane Stress 4.13 Plane Strain 4.14 Generalized Plane Problems 4.15 Strain Energy Density 4.16 Minimum Principles 4.16.1 Minimum Potential Energy 4.16.2 Minimum Complementary Energy 4.16.3 Bounds and Uniqueness 4.17 Effective Property Concept 4.18 Generalized Hooke’s Law 4.19 Material Symmetry 4.19.1 Monoclinic Material 4.19.2 Orthotropic Material 4.19.3 Transversely Isotropic Material 4.19.4 Isotropic Material References Chapter 5 Linear Elastic Stress–Strain Characteristics of Fiber-Reinforced Composites 5.1 Stresses and Deformation 5.2 Maxwell–Betti Reciprocal Theorem 5.3 Material Properties Relationship 5.4 Typical Properties of Materials 5.5 Interpretation of Stress–Strain Relations 5.6 Free Thermal Strains 5.7 Effect of Free Thermal Strains on Stress–Strain Relations 5.8 Effect of Free Moisture Strains on Stress–Strain Relations References Chapter 6 Micromechanics 6.1 Volume and Mass Fractions 6.1.1 Volume Fractions 6.1.2 Mass Fractions 6.2 Density 6.3 Void Content 6.4 Evaluation of Elastic Moduli 6.4.1 Strength-of-Materials Approach 6.4.1.1 Model for E[sub(1)] and v[sub(12)] 6.4.1.2 Model for E[sub(2)] 6.4.1.3 Model for G[sub(12)] 6.4.2 Semi-Empirical Models 6.4.2.1 Longitudinal Young’s Modulus 6.4.2.2 Transverse Young’s Modulus 6.4.2.3 In-plane Shear Modulus 6.4.3 Elasticity Approach 6.4.3.1 Tension in Fiber Direction 6.4.3.2 Axial Shear References Chapter 7 Plane Stress Assumption 7.1 Stresses and Strains under Plane Stress Condition 7.2 Numerical Results 7.3 Effects of Free Thermal and Free Moisture Strains References Chapter 8 Global Coordinate System: Plane Stress Stress–Strain Relations 8.1 Transformation Equations 8.2 Transformed Reduced Compliance 8.3 Transformed Reduced Stiffnesses 8.4 Engineering Properties in Global Coordinates 8.5 Mutual Influence Coefficients 8.6 Free Thermal and Moisture Strains 8.7 Effects of Free Thermal and Moisture Strains on Plane Stress Stress–Strain Relations in Global Coordinate System References Chapter 9 Classical Lamination Theory 9.1 Laminate Nomenclature 9.2 The Kirchhoff Hypothesis 9.3 Effects of the Kirchhoff Hypothesis 9.4 Laminate Strains 9.5 Laminate Stresses 9.6 Stress Distributions 9.6.1 [0/90][sup(s)] Laminate Subjected to Known e[sup(0)][sub(x)] 9.6.2 [0/90][sup(s)] Laminate Subjected to Known k[sup(0)][sub(x)] 9.7 Force and Moment Resultants References Chapter 10 The ABD Matrix 10.1 Force and Moment Resultants 10.2 The ABD Matrix 10.3 Classification of Laminates 10.3.1 Symmetric Laminates 10.3.2 Balanced Laminates 10.3.3 Symmetric Balanced Laminates 10.3.4 Cross-Ply Laminates 10.3.5 Symmetric Cross-Ply Laminates References Chapter 11 Failure Theories for Composite Materials 11.1 Theories of Failure 11.2 Hill’s Theory of Failure 11.3 Tsai–Hill Theory of Failure 11.4 Hoffman Theory of Failure 11.5 Maximum Stress Failure Theory 11.6 Maximum Strain Theory 11.7 The Tsai–Wu Failure Criterion 11.8 Hashin Theory References Chapter 12 Mechanics of Short-Fiber-Reinforced Composites 12.1 Notation 12.2 Average Properties 12.3 Theoretical Models 12.3.1 Cox Shear-Lag Model 12.3.2 Eshelby’s Equivalent Inclusion 12.3.3 Dilute Eshelby’s Model 12.3.4 Mori–Tanaka Model 12.3.5 Chow Model 12.3.6 Modified Halpin–Tsai or Finegan Model 12.3.7 Hashin–Shtrikman Model 12.3.8 Lielens Model 12.3.9 Self-Consistent Model 12.4 Fast Fourier Transform Numerical Homogenization Methods 12.4.1 FFT-Based Homogenization Method 12.4.2 Implementation of FFT-Based Homogenization Method References Chapter 13 Toughness of Composite Materials 13.1 Basics 13.2 Interfacial Fracture 13.3 Work of Fracture 13.3.1 Deformation of Matrix 13.3.2 Fiber Fracture 13.3.3 Interfacial Debonding 13.3.4 Frictional Sliding and Fiber Pullout 13.3.5 Effect of Microstructure 13.4 Subcritical Crack Growth 13.4.1 Fatigue 13.4.2 Stress Corrosion Cracking References Chapter 14 Interlaminar Stresses 14.1 Finite-Width Coupon 14.2 Equilibrium Considerations 14.3 Interlaminar F[sup(xy)] Shear Force 14.3.1 Uniform Strain Loading 14.3.2 Curvature Loading 14.4 Interlaminar M[sup(z)] Moment 14.4.1 Uniform Strain Loading 14.4.2 Curvature Loading 14.5 Interlaminar F[sup(zx)] Shear Force 14.5.1 Uniform Strain Loading 14.5.2 Curvature Loading References Chapter 15 Laminated Plates 15.1 Governing Equations 15.2 Governing Equations (In Displacement Form) 15.3 Simplification of Governing Equations 15.3.1 Symmetric Laminates 15.3.2 Symmetric Balanced Laminates 15.3.3 Symmetric Cross-Ply Laminates References Chapter 16 Viscoelastic and Dynamic Behavior of Composites 16.1 Viscoelastic Behavior of Composites 16.1.1 Boltzmann Superposition Integral 16.1.2 Spring–Dashpot Models 16.1.3 Quasi-Elastic Approach 16.1.4 Complex Modulus 16.1.5 Elastic–Viscoelastic Correspondence Principle 16.2 Dynamic Behavior 16.2.1 Longitudinal Wave Propagation 16.2.2 Flexural Vibration 16.2.3 Damping Analysis References Chapter 17 Mechanical Testing of Composites 17.1 Societies for Testing Standards 17.2 Objectives of Mechanical Testing 17.3 Effect of Anisotropy 17.4 Nature and Quality of Data 17.5 Samples and Specimen for Testing 17.6 Miscellaneous Issues with Testing 17.7 Primary Properties 17.7.1 Microscopy 17.7.2 Ultrasonic Inspection 17.7.3 X-Ray Inspection 17.7.4 Thermography 17.8 Physical Properties 17.8.1 Density 17.8.2 Fiber Volume Fraction 17.8.3 Void Content 17.8.4 Moisture Content 17.9 Tensile and Compressive Testing 17.9.1 Rosette Principle 17.9.2 Tensile Test 17.9.3 Compression Test 17.10 Shear Testing 17.10.1 Two-Rail Shear Test 17.10.2 Three-Rail Shear Test References Index