دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2 سری: ISBN (شابک) : 9783030565107, 3030565106 ناشر: SPRINGER NATURE سال نشر: 2020 تعداد صفحات: 307 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب COMPLEX SYSTEMS AND COMPUTATIONAL BIOLOGY APPROACHES TO ACUTE INFLAMMATION به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های پیچیده و رویکردهای زیست شناسی محاسباتی به التهاب حاد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents About the Editors Part I: Overview Chapter 1: An Overview of the Translational Dilemma and the Need for Model-Based Precision Medicine Introduction Progress in Translational Systems Biology of Inflammation Challenges and Future Perspectives References Part II: Computational Modeling Methods and Biomedical Applications Chapter 2: Translational Equation-Based Modeling Equation-Based Models of Biological Systems Historical Perspective Types of Equation-Based Models Advantages of Equation-Based Models Disadvantages of Equation-Based Models Models Big and Small Validating Equation-Based Models Using Equation-Based Models as a Prediction Tool Parameter Estimation and the Inverse Problem Approaches to Solving the Ill-Posed Inverse Problem Hybrid Models Translational Applications The Interdisciplinary Perspective Enhancing Current Trial Design In Silico Clinical Trials Parameter Ensembles vs. Data: Different Worldviews Novel Approaches to Personalized Therapies for the Critically Ill Conclusion References Chapter 3: Agent-Based Modeling in Translational Systems Biology The Translational Dilemma and the Need for Dynamic Knowledge Representation Dynamic Knowledge Representation with Agent-Based Modeling Related Modeling Methods Agent-Based Models Versus Multiagent Systems Properties of Agent-Based Models Representation of Spatial Relationships Representation of Parallelism and Concurrency Incorporation of Stochasticity and Randomness Modular Architecture Generation of Nonintuitive System-Level Phenomenon Readily Facilitates Useful and Detailed Abstraction Tools for Agent-Based Modeling Agent-Based Modeling of Inflammation ABMs of Inflammation-Related Intracellular Processes Cell-Level ABMs of Systemic Inflammation and Simulated Trials for Sepsis ABMs of Multiorgan Inflammation and Failure Moving Forward: Scaling Dynamic Knowledge Representation, the Agent-Based Modeling Format (ABMF) Challenges to the Use of Agent-Based Modeling Conclusion References Chapter 4: Integrating Data-Driven and Mechanistic Models of the Inflammatory Response in Sepsis and Trauma Introduction A Systems Approach to Inflammation Data-Driven (Correlative) Approaches to Dynamic Inflammation Data Dynamic, Mechanistic Modeling of Inflammation Combining Data-Driven and Mechanistic Modeling of Inflammation Conclusions and Future Prospects References Chapter 5: Therapeutics as Control: Model-Based Control Discovery for Sepsis Introduction Model-Based Control Discovery: Overcoming Limitations of Current Biomedical Research Sepsis as a Control Problem Insights from Model Predictive Control of Sepsis Model-Based Control Discovery Using Agent-Based Models Discussion References Part III: Translational Modeling of Sepsis and Trauma Chapter 6: Disorder of Systemic Inflammation in Sepsis and Trauma: A Systems Perspective Introduction Sensing Mechanisms Infection Tissue Damage Hypoxia/Ischemia Cellular Factors of the Inflammatory Response Effectors of the Inflammatory Response ROS & RNS Coagulation Cascade Neuroendocrine Cytokines and Chemokines Complement Consequences of the Inflammatory Response Derangements of Systemic Inflammation Excessive Inflammation from Severe Injury Immunosuppression Apoptosis Th1 to Th2 Conversion Immune Response with Age Treatment Considerations Mitigating the Hyperinflammatory Response Reversing Immunosuppression Conclusion References Chapter 7: Multiscale Equation-Based Models: Insights for Inflammation and Physiological Variability Introduction Multiscale Modeling of Human Endotoxemia Immune Cells Identification of Key Transcriptional Responses Indirect Response Modeling Central Control of Immunomodulatory Hormones Circadian Rhythms Ultradian Rhythms Heart Rate and Heart Rate Variability Autonomic Origins of Heart Rate Variability Discrete-Continuous Modeling Challenges in Translational Modeling of Heart Rate Variability in Endotoxemia Conclusions References Chapter 8: In Silico Trials and Personalized Therapy for Sepsis and Trauma Inflammatory Diseases: A Pox on All Our Houses Insufficiencies in the Current Process of Drug/Device Design and Executing Clinical Trials Inflammation in Critical Illness: Rational Systems Approaches for a Complex Therapeutic Target Dynamic Knowledge Representation in the Context of In Silico Clinical Trials Dynamic Knowledge Representation at the Individual Level: Optimization of Diagnosis and Therapy Conclusions and Perspectives References Chapter 9: Computational Modeling of the Coagulation Response During Trauma Introduction Multiscale Modeling of Bleeding During Trauma Coagulation Modeling Coagulation During Bleeding Data-Driven Development of Subject-Specific Platelet Function Profiles Conclusion References Part IV: Translational Modeling of Organ/Tissue Specific Inflammatory Disease Processes Chapter 10: Disorders of Localized Inflammation in Wound Healing Introduction Hemostasis Inflammation Epithelialization Angiogenesis Provisional Matrix Formation Remodeling Conclusion References Chapter 11: Equation-Based Models of Wound Healing and Collective Cell Migration Introduction Modeling ODE Models PDE Models Agent-Based Models of Cell Migration Applications of Wound Healing Models Conclusion References Chapter 12: Agent-Based Modeling of Wound Healing: Examples for Basic and Translational Research Introduction Wound Healing and Inflammation Agent-Based Modeling Agent-Based Modeling of Wound Healing Agent-Based Modeling for Basic Science Knowledge Integration: An ABM of Epithelial Restitution Model Construction and Overall Architecture Model Calibration: System-Level Dynamics Simulation Experiments Agent-Based Modeling as a Clinical–Translational Aid: An ABM of Pressure Ulcer Formation in Spinal Cord Injury Patients Model Architecture I/R Mechanism: Implementation and Validation Inflammation Mechanism: Implementation and Validation Sensitivity Analysis and In Silico Trials Discussion and Conclusions References Chapter 13: Multiscale and Tissue Realistic Translational Modeling of Gut Inflammation Introduction The Spatially Explicit General-Purpose Model of Enteric Tissue (SEGMEnT) General Description Behaviors: Calibration and Validation Anatomic Scale: Whole Organ Simulation with SEGMEnT_HPC Challenges in Anatomic Scale Modeling: Buffering Challenges in Anatomic Scale Modeling: Load Balancing Conclusion References Chapter 14: Data-Driven Modeling of Liver Injury, Inflammation, and Fibrosis Introduction Data-Driven Modeling: Clinical Insights into Pediatric Acute Liver Failure Data-Driven Modeling: Tissue-Scale Insights in Liver Tissue Preservation Data-Driven Modeling: Cellular-Scale Insights into Hypoxia, Ischemia, and Hemorrhagic Shock Traversing In Vitro and Clinical Data Using Computational Modeling Conclusions and Future Prospects References Chapter 15: Temporal and Spatial Analyses of TB Granulomas to Predict Long-Term Outcomes Introduction Methods GranSim: A Hybrid Agent-Based Model Generating a Repository of Simulated Granulomas Immunohistochemical Staining of NHP Tissue Samples Using GIS to Identify Locations of T Cells and Macrophages in an IHC Image of a Granuloma Methods for Classification and Analysis of Granulomas Temporal Classification Spatial Analysis Prediction of Future Temporal Behavior from Spatial Structure Analysis Results Temporal Classification of Simulated Granulomas Based on CFU and Lesion Size Spatial Analysis of Simulated and Experimental Granulomas Spatial Structure Predicts Future Temporal Granuloma Stability Identifying Spatial Characteristics that Correlate with Granuloma Severity Discussion References Part V: Future Perspectives: Translation to Implementation Chapter 16: The Rationale and Implementation of Model-Based Precision Medicine for Inflammatory Diseases References Index