ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Complex Analysis with Applications to Number Theory

دانلود کتاب تجزیه و تحلیل پیچیده با برنامه های کاربردی در نظریه شماره

Complex Analysis with Applications to Number Theory

مشخصات کتاب

Complex Analysis with Applications to Number Theory

ویرایش: 1st ed. 
نویسندگان:   
سری: Infosys Science Foundation Series 
ISBN (شابک) : 9789811590962, 9789811590979 
ناشر: Springer Singapore;Springer 
سال نشر: 2020 
تعداد صفحات: 297 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 3 مگابایت 

قیمت کتاب (تومان) : 54,000



کلمات کلیدی مربوط به کتاب تجزیه و تحلیل پیچیده با برنامه های کاربردی در نظریه شماره: ریاضیات، تجزیه و تحلیل، نظریه اعداد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 24


در صورت تبدیل فایل کتاب Complex Analysis with Applications to Number Theory به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تجزیه و تحلیل پیچیده با برنامه های کاربردی در نظریه شماره نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تجزیه و تحلیل پیچیده با برنامه های کاربردی در نظریه شماره



این کتاب موضوعات اصلی را در تحلیل پیچیده با کاربردهای تئوری اعداد مورد بحث قرار می دهد. این کتاب به عنوان متنی برای دانشجویان تحصیلات تکمیلی ریاضیات و دانشجویان کارشناسی مهندسی و همچنین برای محققان تحلیل پیچیده و نظریه اعداد در نظر گرفته شده است. این نظریه پیش نیازی برای مطالعه بسیاری از حوزه های ریاضیات از جمله نظریه چند متغیر پیچیده متناهی و بی نهایت، هندسه هذلولی، دو و سه منیفولد و نظریه اعداد است. علاوه بر مثال‌ها و مسائل حل‌شده، این کتاب بیشتر موضوعات مورد علاقه کنونی را پوشش می‌دهد، مانند قضایای کوشی، قضایای پیکارد، تابع ریمان–زتا، قضیه دیریکله، تابع گاما و توابع هارمونیک.



توضیحاتی درمورد کتاب به خارجی

The book discusses major topics in complex analysis with applications to number theory. This book is intended as a text for graduate students of mathematics and undergraduate students of engineering, as well as to researchers in complex analysis and number theory. This theory is a prerequisite for the study of many areas of mathematics, including the theory of several finitely and infinitely many complex variables, hyperbolic geometry, two and three manifolds and number theory. In additional to solved examples and problems, the book covers most of the topics of current interest, such as Cauchy theorems, Picard’s theorems, Riemann–Zeta function, Dirichlet theorem, gamma function and harmonic functions.




فهرست مطالب

Preface
Contents
About the Author
Symbols
1 Introduction and Simply Connected Regions
	1.1 Introduction
	1.2 Connectedness
	1.3 Extended Complex Plane
	1.4 Distance Between Non-intersecting Compact and Closed sets
	1.5 Complex Integral
	1.6 Homotopic Paths
	1.7 Results on Simply Connected Regions
	1.8 Notation for Denoting Constants
	1.9 Exercises
2 The Cauchy Theorems and Their Applications
	2.1 Introduction
	2.2 The Cauchy Theorem and the Cauchy Integral Formula for Convex Open Sets
	2.3 An Account of Some Basic Results on Analytic Functions
	2.4 The Cauchy Theorem for Closed Paths in A Simply Connected Region
	2.5 The Cauchy Integral Formula and the Cauchy Theorem for Cycles Homologous To Zero in an Open Set and the Cauchy Residue Theorem
	2.6 Argument Principle, Open Mapping Theorem, Maximum Modulus Principle, the Rouché Theorem and The Jensen Formula
	2.7 The Phragmen–Lindelöf Method: Maximum Modulus Principle in an Unbounded Strip and the Hadamard Three-Circle Theorem
	2.8 Existence of an Analytic Branch of Logarithm of Non-vanishing Analytic Functions
	2.9 The Jensen Formula
	2.10 An Estimate for the Number of Zeros of an Exponential Polynomial in a Disc
	2.11 Exercises
3 Conformal Mappings and the Riemann Mapping Theorem
	3.1 Introduction
	3.2 Examples of Explicit Conformal Mappings
	3.3 Automorphisms of the Open Unit Disc
	3.4 Automorphisms of the Upper Half Plane
	3.5 The Riemann Mapping Theorem and More General Theorem 3.11
	3.6 Lemmas for the Proof of Theorem 3.11
	3.7 Proof of Theorem 3.11
	3.8 Exercises
4  Harmonic Functions
	4.1 Introduction
	4.2 The Cauchy–Riemann Equations
	4.3 Definition and Examples of Harmonic Functions
	4.4 Harmonic Conjugate of a Harmonic Function  in a Simply Connected Region
	4.5 Maximum Principle for Harmonic Functions Satisfying MVP
	4.6 The Dirichlet Problem for Open Discs
	4.7 Exercises
5 The Picard Theorems
	5.1 Introduction
	5.2 The Borel and Carathéodory Lemma and Other Results for the Picard Theorems
	5.3 Proof of the Schottky Theorem 5.2
	5.4 Proofs of the Little Picard Theorem 5.1 and the Great Picard Theorem 5.3
	5.5 Exercises
6 The Weierstrass Factorisation Theorem, Hadamard\'s Factorisation Theorem and the Gamma Function
	6.1 Introduction
	6.2 Infinite Products
	6.3 The Weierstrass Elementary Factors
	6.4 The Weierstrass Factorisation Theorem
	6.5 Hadamard\'s Factorisation Theorem
	6.6 Extension of the Weierstrass Factorisation Theorem for an Arbitrary Region
	6.7 Representation of Meromorphic Functions by Partial Fractions
	6.8 Applications of the Weierstrass Factorisation Theorem
	6.9 The Gamma Function
	6.10 Integral Representation for  Γ(z)
	6.11 The Bernoulli Numbers and the Bernoulli Polynomials
	6.12 The Euler–Maclaurin–Jacobi Sum Formula
	6.13 The Stirling Formula
	6.14 The Beta Function
	6.15 Exercises
7 The Riemann Zeta Function and the Prime Number Theorem
	7.1 Introduction
	7.2 The Euler Product for ζ(s)
	7.3 Applications of the Euler Product for ζ(s)
	7.4 The Abel Summation Formula and Integral Representations for ζ\'(s)ζ(s)
	7.5 Analytic Continuation of ζ(s) in σ>0 and Its Non-vanishing on the Line σ=1
	7.6 Estimates for ζ(s) and ζ\'(s)
	7.7 Introduction to the Prime Number Theorem
	7.8 Equivalence of PNT and the Non-vanishing of ζ(s) on the Line σ=1
	7.9 Lemmas for the Proof of the Wiener–Ikehara Theorem 7.18
	7.10 Proof of Theorem 7.18
	7.11 Analytic Continuation of ζ(s) in C and Functional Equation for ζ(s)
	7.12 The Function µ(σ)
	7.13 Main Conjectures in the Theory of the Riemann Zeta Function
	7.14 Exercises
8 The Prime Number Theorem with an Error Term
	8.1 Introduction
	8.2 Positive Lower Bound for |ζ(1+it)| and Zero-Free Region for ζ(s)
	8.3 An Equivalent Version of Prime Number Theorem …
	8.4 Integral Representation for ψ1(x)
	8.5 Proof of Theorem 8.1
	8.6 Exercises
9 The Dirichlet Series and the Dirichlet Theorem on Primes in Arithmetic Progressions
	9.1 Introduction
	9.2 Convergence of the Dirichlet Series
	9.3 Multiplication of Two Dirichlet Series
	9.4 Another Proof of Theorem 7.9摥映數爠eflinkthm6.77.97 That ζ(1+it)neq0
	9.5 Characters of Finite Abelian Groups
		9.5.1 Properties of Characters
	9.6 The Dirichlet Characters
	9.7 The Dirichlet L-Functions
	9.8 Non-vanishing of L(1, χ)
	9.9 The Dirichlet Theorem on Primes in Arithmetic Progression
	9.10 The Prime Number Theorem in an Arithmetic Progression
	9.11 Exercises
10 The Baker Theorem
	10.1 Introduction
	10.2 The Thue-Siegel Lemma
	10.3 Proof of the Baker Theorem 10.1
	10.4 Proof of Corollary 10.2
	10.5 An Application of (10.1.1)
	10.6 Exercises
Appendix  References
Index




نظرات کاربران