دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2019
نویسندگان: Hemant Kumar Pathak
سری:
ISBN (شابک) : 9811397333, 9789811397332
ناشر: Springer
سال نشر: 2019
تعداد صفحات: 940
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
کلمات کلیدی مربوط به کتاب تحلیل پیچیده و کاربردها: ریاضیات، حساب دیفرانسیل و انتگرال، متغیر مختلط
در صورت تبدیل فایل کتاب Complex Analysis and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل پیچیده و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents About the Author Acronyms Glossary of Symbols 1 Complex Numbers and Metric Topology of mathbbC 1.1 Introduction 1.2 Complex Numbers 1.2.1 Equality of Complex Numbers 1.2.2 Fundamental Laws of Addition and Multiplication 1.2.3 Difference and Division of Two Complex Numbers 1.3 Modulus and Argument of Complex Numbers 1.4 Geometrical Representations of Complex Numbers 1.5 Modulus and Argument of Complex Numbers 1.5.1 Polar Forms of Complex Numbers 1.5.2 Conjugates 1.5.3 Vector Representation of Complex Numbers 1.5.4 Multiplication of a Complex Number by i 1.6 Properties of Moduli 1.7 Properties of Arguments 1.8 Equations of Straight Lines 1.9 Equations of Circles 1.9.1 General Equation of a Circle 1.9.2 Equations of Circles Through Three Points 1.10 Inverse Points 1.10.1 Inverse Points with Respect to Lines 1.10.2 Inverse Points with Respect to Circles 1.11 Relations Between Inverse Points with Respect To Circles 1.12 Riemann Spheres and Point at Infinity 1.12.1 Point at Infinity 1.12.2 Riemann Spheres 1.13 Cauchy–Schwarz's Inequality and Lagrange's Identity 1.14 Metric Spaces and Topology of mathbbC 1.14.1 Metric Spaces 1.14.2 Dense Set 1.14.3 Connectedness 1.14.4 Convergence and Completeness 1.14.5 Component 1.14.6 Compactness 1.14.7 Continuity 1.14.8 Topological Spaces 1.14.9 Metrizable Spaces 1.14.10 Homeomorphism 2 Analytic Functions, Power Series, and Uniform Convergence 2.1 Introduction 2.2 Functions of Complex Variables 2.2.1 Limits of Functions 2.2.2 Continuity 2.3 Uniform Continuity 2.4 Differentiability 2.5 Analytic and Regular Functions 2.6 Cauchy–Riemann Equations 2.6.1 Conjugate Functions 2.6.2 Harmonic Functions 2.6.3 Polar Form of the Cauchy–Riemann Equations 2.7 Methods of Constructing Analytic Functions 2.7.1 Simple Methods of Constructing Analytic Functions (Without Using Integrals) 2.8 Power Series 2.8.1 Absolute Convergence of a Power Series 2.8.2 Some Special Test for Convergence of Series 2.9 Certain Theorems on Power Series 2.9.1 Abel's Theorem 2.9.2 Cauchy–Hadamard's Theorem 2.9.3 Circle and Radius of Convergence of a Power Series 2.9.4 Analyticity of the Sum Function of a Power Series 2.9.5 Abel's Limit Theorem 2.10 Elementary Functions of a Complex Variable 2.11 Many-Valued Functions: Branches 2.12 The Logarithm and Power Functions 2.13 The Riemann Surface for Log z 2.14 Uniform Convergence of a Sequence 2.14.1 General Principle of Uniform Convergence of a Sequence 2.15 Uniform Convergence of a Series 2.15.1 Principle of Uniform Convergence of a Series 2.15.2 Sufficient Tests for Uniform Convergence of a Series 2.15.3 Weierstrass M-Test 2.16 Hardy's Tests for Uniform Convergence 2.17 Continuity of the Sum Function of a Series 3 Complex Integrations 3.1 Introduction 3.2 Complex Integrations 3.2.1 Some Definitions 3.2.2 Rectifiable Curves 3.3 Complex Integrals 3.3.1 Evaluation of Some Integrals by the Direct Definition 3.3.2 Some Elementary Properties of Complex Integrals 3.3.3 Integrations Along Regular Arcs 3.3.4 Complex Integrals as Sum of Two Real Line Integrals 3.3.5 The Absolute Value of Complex Integrals 3.3.6 Line Integrals as Functions of Arcs 3.4 Cauchy's Theorem 3.4.1 The Elementary Form of Cauchy's Theorem 3.4.2 The Index of Closed Curves with Respect to a Point 3.4.3 The General Form of Cauchy's Theorem 3.4.4 The Second Proof of Cauchy–Goursat's Theorem 3.5 Indefinite Integrals of Primitives 3.6 Cauchy's Integral Formula 3.7 Derivatives of Analytic Functions 3.8 Higher Order Derivatives 3.9 Morera's Theorem 3.10 Poisson's Integral Formula for a Circle 3.11 Cauchy's Inequality 3.12 Liouville's Theorem 3.13 Cauchy's Theorem and Integral Formulas 3.14 Cauchy's Theorem and Simple Connectivity 3.14.1 Homotopic Closed Curves 3.14.2 The Homotopic Version of Cauchy's Theorem 3.14.3 Simply Connected Region 3.15 Term-by-Term Integration 3.16 Analyticity of the Sum Function of a Series (Term-by-Term Differentiation) 3.17 Uniform Convergence of Power Series 3.18 Expansion of Analytic Functions as Power Series 3.18.1 Taylor's Theorem 3.18.2 Laurent's Theorem 4 Singularities of Complex Functions and Principle of Argument 4.1 Introduction 4.2 Zeros of Analytic Functions 4.3 Singular Points 4.3.1 Definitions 4.3.2 Poles, Isolated Essential Singularities, and Removable Singularities 4.3.3 Meromorphic Functions 4.3.4 Some Theorems on Poles and Other Singularities 4.3.5 Limiting Point of Zeros 4.3.6 Limit Point of Poles 4.3.7 The ``Point at Infinity'' 4.4 Characterization of Polynomials 4.4.1 Characterization of Rational Functions 4.5 Argument Principle 4.6 Rouché's Theorem 4.6.1 The Fundamental Theorem of Algebra 4.7 Maximum Modulus Principle 4.7.1 Schwarz's Lemma 4.8 The Inverse Functions 5 Calculus of Residues and Applications to Contour Integration 5.1 Introduction 5.2 The Residues at Singularities 5.3 Calculation of Residues in Some Special Cases 5.4 Residues at Infinity 5.5 Some Residue Theorems 5.6 Evaluation of Definite Integrals by Contour Integration 5.7 Integration Round the Unit Circle 5.8 Evaluation of the Integral of the Type int-inftyinfty f(x)dx 5.9 Jordan's Inequality 5.10 Jordan's Lemma 5.11 Evaluation of the Integrals of the Form … 5.12 Case of Poles on the Real Axis 5.13 Case of Poles on the Real Axis (Indenting Method) 5.14 Integrals of Many-Valued Functions 5.15 A Quadrant or a Sector of a Circle as the Contour 5.16 Rectangular Contour 6 Bilinear Transformations and Applications 6.1 Introduction 6.2 Mapping or Transformation 6.3 Jacobian of a Transformation 6.4 Superficial Magnification 6.5 Some Elementary Transformations 6.6 Linear Transformation 6.7 Bilinear or Möbius Transformation 6.8 Product or Resultant of Two Bilinear Transformations 6.9 Every Bilinear Transformation Is the Resultant of Elementary Transformations 6.10 Bilinear Transformation as the Resultant of an Even Number of Inversions 6.11 The Linear Group 6.12 Cross Ratio 6.13 Preservation of Cross Ratio Under Bilinear Transformations 6.14 Preservation of the Family of Circles and Straight Lines Under Bilinear Transformations 6.15 Two Important Families of Circles 6.16 Fixed Point of a Bilinear Transformation 6.17 Normal Form of a Bilinear Transformation 6.18 Elliptic, Hyperbolic and Parabolic Transformations 6.19 Special Bilinear Transformations 7 Conformal Mappings and Applications 7.1 Introduction 7.2 Conformal Mapping 7.3 Sufficient Condition for w = f(z) to Represent a Conformal Mapping 7.4 Necessary Condition for w = f(z) to Represent a Conformal Mapping 7.5 The Transformation w = za (a, Any Complex Number) 7.6 The Inverse Transformation z = sqrtw 7.7 The Exponential Transformation w = ez 7.8 The Logarithmic Transformation w =logz 7.9 The Trigonometrical Transformation z = c sinw 7.10 The Transformation w = tanz 7.11 The Transformation w = tan2(π4asqrtz) 7.12 The Transformation w = 12(z+1z) 7.13 The Transformation z = 12(w+1w) 8 Spaces of Analytic Functions 8.1 Introduction 8.2 The Space of Continuous Functions C(G,Ω) 8.3 Normality 8.4 Equicontinuity 8.5 Spaces of Analytic Functions 8.6 Analytic Functions and Their Inverses 8.7 The Riemann Mapping Theorem 9 Entire and Meromorphic Functions 9.1 Introduction 9.2 Weierstrass Factorization Theorem 9.3 Gamma Function 9.4 The Riemann Zeta Function 9.4.1 Extension of Zeta Function 9.4.2 Riemann's Functional Equation 9.5 Application of Riemann Hypothesis in Number Theory 9.5.1 The Prime Number Theorem 9.6 Runge's Theorem 9.7 Mittag-Leffler's Theorem 10 Analytic Continuation 10.1 Introduction 10.2 Analytic Continuation 10.3 Uniqueness of Analytic Continuation 10.4 Power Series Method of Analytic Continuation 10.5 Schwarz's Reflection Principle 10.6 Analytic Continuation Along a Path 10.7 Monodromy Theorem and Its Consequences 11 Harmonic Functions and Integral Functions 11.1 Introduction 11.2 Harmonic Functions 11.3 Basic Properties of Harmonic Functions 11.4 Harmonic Functions on a Disk 11.5 Space of Harmonic Functions 11.6 Subharmonic and Superharmonic Functions 11.7 The Dirichlet Problem 11.8 Green's Function 11.9 Formulas of Poisson, Hilbert, and Bromwich 11.10 Functions Defined by Integrals 12 Canonical Products and Convergence of Entire Functions 12.1 Introduction 12.2 Canonical Product 12.3 The Jensen and Poisson–Jensen Formulas 12.4 Growth, Order, and Exponents of Convergence of Entire Functions 12.4.1 Growth of Entire Functions 12.4.2 The Maximum Modulus of an Entire Function 12.5 Hadamard's Three-Circle Theorem 12.6 Convex Functions 12.7 The Genus and Order of an Entire Function 12.8 Exponents of Convergence 13 The Range of an Analytic Function 13.1 Introduction 13.2 Bloch's Theorem 13.3 The Little Picard Theorem 13.4 Schottky's Theorem 13.5 Montel-Carathéodory Theorem and the Great Picard Theorem 14 Univalent Functions and Applications 14.1 Introduction 14.2 Univalent Function 14.2.1 Open Mapping Theorem 14.2.2 Inverse Function Theorem 14.2.3 Global Mapping Theorem 14.2.4 Reflection Principle 14.3 The Class of mathscrS 14.4 Bieberbach Conjecture 14.4.1 Subordination 14.4.2 Starlike Functions 14.4.3 Convex and Close-to-Convex Functions 14.4.4 Non-univalent Analytic Functions with Real Coefficients 14.5 14-Theorem 14.5.1 An Application of ``14-Theorem'' 15 Function Theory of Several Complex Variables 15.1 Introduction 15.2 Analytic Functions of Several Complex Variables 15.2.1 Elementary Properties of Analytic Functions 15.3 Power Series in Several Variables 15.4 Complex Analysis in Several Variables 15.4.1 Cauchy Integral Formula 15.4.2 Higher Order Partial Derivatives 15.4.3 Montel Theorem 15.5 Cartan Theorem 15.6 Groups of Analytic Automorphism of the Unit Ball and the Bidisk 15.7 Poincaré Theorem 15.8 Hartogs Theorem A Solution of Selected Problems in Exercises References Index