دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 7. ed. نویسندگان: Amir D. Aczel, Jayavel Sounderpandian سری: The McGraw-Hill/Irwin series operations and decision sciences ISBN (شابک) : 9780073373607, 0073373605 ناشر: McGraw-Hill/Irwin سال نشر: 2009 تعداد صفحات: 832 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Complete business statistics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار کامل تجارت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Title Contents 1 Introduction and Descriptive Statistics 1–1 Using Statistics Samples and Populations Data and Data Collection 1–2 Percentiles and Quartiles 1–3 Measures of Central Tendency 1–4 Measures of Variability 1–5 Grouped Data and the Histogram 1–6 Skewness and Kurtosis 1–7 Relations between the Mean and the Standard Deviation Chebyshev’s Theorem The Empirical Rule 1–8 Methods of Displaying Data Pie Charts Bar Charts Frequency Polygons and Ogives A Caution about Graphs Time Plots 1–9 Exploratory Data Analysis Stem-and-Leaf Displays Box Plots 1–10 Using the Computer Using Excel for Descriptive Statistics and Plots Using MINITAB for Descriptive Statistics and Plots 1–11 Summary and Review of Terms Case 1: NASDAQ Volatility 2 Probability 2–1 Using Statistics 2–2 Basic Definitions: Events, Sample Space, and Probabilities 2–3 Basic Rules for Probability The Range of Values The Rule of Complements Mutually Exclusive Events 2–4 Conditional Probability 2–5 Independence of Events Product Rules for Independent Events 2–6 Combinatorial Concepts 2–7 The Law of Total Probability and Bayes’ Theorem The Law of Total Probability Bayes’ Theorem Case 2: Job Applications 2–8 The Joint Probability Table 2–9 Using the Computer Excel Templates and Formulas Using MINITAB 2–10 Summary and Review of Terms 3 Random Variables 3–1 Using Statistics Discrete and Continuous Random Variables Cumulative Distribution Function 3–2 Expected Values of Discrete Random Variables The Expected Value of a Function of a Random Variable Variance and Standard Deviation of a Random Variable Variance of a Linear Function of a Random Variable 3–3 Sum and Linear Composites of Random Variables Chebyshev’s Theorem The Templates for Random Variables 3–4 Bernoulli Random Variable 3–5 The Binomial Random Variable Conditions for a Binomial Random Variable Binomial Distribution Formulas The Template Problem Solving with the Template 3–6 Negative Binomial Distribution Negative Binomial Distribution Formulas Problem Solving with the Template 3–7 The Geometric Distribution Geometric Distribution Formulas Problem Solving with the Template 3–8 The Hypergeometric Distribution Hypergeometric Distribution Formulas Problem Solving with the Template 3–9 The Poisson Distribution Problem Solving with the Template 3–10 Continuous Random Variables 3–11 The Uniform Distribution Problem Solving with the Template 3–12 The Exponential Distribution A Remarkable Property 3–14 Summary and Review of Terms The Template Value at Risk 3–13 Using the Computer Using Excel Formulas for Some Standard Distributions Using MINITAB for Some Standard Distributions Case 3: Concepts Testing 4 The Normal Distribution 4–1 Using Statistics 4–2 Properties of the Normal Distribution 4–3 The Standard Normal Distribution Finding Probabilities of the Standard Normal Distribution Finding Values of Z Given a Probability 4–4 The Transformation of Normal Random Variables Using the Normal Transformation 4–5 The Inverse Transformation 4–6 The Template Problem Solving with the Template 4–7 Normal Approximation of Binomial Distributions 4–8 Using the Computer Using Excel Functions for a Normal Distribution Using MINITAB for a Normal Distribution 4–9 Summary and Review of Terms Case 4: Acceptable Pins Case 5: Multicurrency Decision 5 Sampling and Sampling Distributions 5–1 Using Statistics 5–2 Sample Statistics as Estimators of Population Parameters Obtaining a Random Sample Other Sampling Methods Nonresponse 5–3 Sampling Distributions The Central Limit Theorem The History of the Central Limit Theorem The Standardized Sampling Distribution of the Sample Mean When � Is Not Known The Sampling Distribution of the Sample Proportion ˆ P 5–4 Estimators and Their Properties Applying the Concepts of Unbiasedness, Efficiency, Consistency, and Sufficiency 5–5 Degrees of Freedom 5–6 Using the Computer Using Excel for Generating Sampling Distributions Using MINITAB for Generating Sampling Distributions 5–7 Summary and Review of Terms Case 6: Acceptance Sampling of Pins Case 9: Tiresome Tires I 6 Confidence Intervals 6–1 Using Statistics 6–2 Confidence Interval for the Population Mean When the Population Standard Deviation Is Known The Template 6–3 Confidence Intervals for � When � Is Unknown— The t Distribution The t Distribution 6–4 Large-Sample Confidence Intervals for the Population Proportion p The Template 6–5 Confidence Intervals for the Population Variance The Template 6–6 Sample-Size Determination 6–7 The Templates Optimizing Population Mean Estimates Determining the Optimal Half-Width Using the Solver Optimizing Population Proportion Estimates 6–8 Using the Computer Using Excel Built-In Functions for Confidence Interval Estimation Using MINITAB for Confidence Interval Estimation 6–9 Summary and Review of Terms Case 7: Presidential Polling Case 8: Privacy Problem 7 Hypothesis Testing 7–1 Using Statistics The Null Hypothesis 7–2 The Concepts of Hypothesis Testing Evidence Gathering Type I and Type II Errors The p-Value The Significance Level Optimal � and the Compromise between Type I and Type II Errors � and Power Sample Size 7–3 Computing the p-Value The Test Statistic p-Value Calculations One-Tailed and Two-Tailed Tests Computing � 7–4 The Hypothesis Test Testing Population Means A Note on t Tables and p-Values The Templates Testing Population Proportions Testing Population Variances 7–5 Pretest Decisions Testing Population Means Manual Calculation of Required Sample Size Testing Population Proportions Manual Calculation of Sample Size 7–6 Using the Computer Using Excel for One-Sample Hypothesis Testing Using MINITAB for One-Sample Hypothesis Testing 7–7 Summary and Review of Terms 8 The Comparison of Two Populations 8–1 Using Statistics 8–2 Paired-Observation Comparisons The Template Confidence Intervals The Template 8–3 A Test for the Difference between Two Population Means Using Independent Random Samples The Templates Confidence Intervals The Templates Confidence Intervals 8–4 A Large-Sample Test for the Difference between Two Population Proportions Confidence Intervals The Template 8–5 The F Distribution and a Test for Equality of Two Population Variances A Statistical Test for Equality of Two Population Variances The Templates 8–6 Using the Computer Using Excel for Comparison of Two Populations Using MINITAB for Comparison of Two Samples 8–7 Summary and Review of Terms Case 10: Tiresome Tires II 9 Analysis of Variance 9–1 Using Statistics 9–2 The Hypothesis Test of Analysis of Variance The Test Statistic 9–3 The Theory and the Computations of ANOVA The Sum-of-Squares Principle The Degrees of Freedom The Mean Squares The Expected Values of the Statistics MSTR and MSE under the Null Hypothesis The F Statistic 9–4 The ANOVA Table and Examples 9–5 Further Analysis The Tukey Pairwise-Comparisons Test Conducting the Tests The Case of Unequal Sample Sizes, and Alternative Procedures The Template 9–6 Models, Factors, and Designs One-Factor versus Multifactor Models Fixed-Effects versus Random-Effects Models Experimental Design 9–7 Two-Way Analysis of Variance The Two-Way ANOVA Model The Hypothesis Tests in Two-Way ANOVA Sums of Squares, Degrees of Freedom, and Mean Squares The F Ratios and the Two-Way ANOVA Table The Template The Overall Significance Level The Tukey Method for Two-Way Analysis Extension of ANOVA to Three Factors Two-Way ANOVA with One Observation per Cell 9–8 Blocking Designs Randomized Complete Block Design The Template 9–9 Using the Computer Using Excel for Analysis of Variance Using MINITAB for Analysis of Variance 9–10 Summary and Review of Terms Case 11: Rating Wines Case 12: Checking Out Checkout 10 Simple Linear Regression and Correlation 10–1 Using Statistics Model Building 10–2 The Simple Linear Regression Model 10–3 Estimation: The Method of Least Squares The Template 10–4 Error Variance and the Standard Errors of Regression Estimators Confidence Intervals for the Regression Parameters 10–5 Correlation 10–6 Hypothesis Tests about the Regression Relationship Other Tests 10–7 How Good Is the Regression? 10–8 Analysis-of-Variance Table and an F Test of the Regression Model 10–9 Residual Analysis and Checking for Model Inadequacies A Check for the Equality of Variance of the Errors Testing for Missing Variables Detecting a Curvilinear Relationship between Y and X The Normal Probability Plot 10–10 Use of the Regression Model for Prediction Point Predictions Prediction Intervals A Confidence Interval for the Average Y, Given a Particular Value of X 10–11 Using the Computer The Excel Solver Method for Regression The Excel LINEST Function Using MINITAB for Simple Linear Regression Analysis 10–12 Summary and Review of Terms Case 13: Firm Leverage and Shareholder Rights Case 14: Risk and Return 11 Multiple Regression 11–1 Using Statistics 11–2 The k-Variable Multiple Regression Model The Estimated Regression Relationship 11–3 The F Test of a Multiple Regression Model 11–4 How Good Is the Regression? 11–5 Tests of the Significance of Individual Regression Parameters 11–6 Testing the Validity of the Regression Model Residual Plots Standardized Residuals The Normal Probability Plot Outliers and Influential Observations Lack of Fit and Other Problems 11–7 Using the Multiple Regression Model for Prediction The Template Setting Recalculation to “Manual” on the Template 11–8 Qualitative Independent Variables Interactions between Qualitative and Quantitative Variables 11–9 Polynomial Regression Other Variables and Cross-Product Terms 11–10 Nonlinear Models and Transformations Variance-Stabilizing Transformations Regression with Dependent Indicator Variable 11–11 Multicollinearity Causes of Multicollinearity Detecting the Existence of Multicollinearity Solutions to the Multicollinearity Problem 11–12 Residual Autocorrelation and the Durbin-Watson Test 11–13 Partial F Tests and Variable Selection Methods Partial F Tests Variable Selection Methods 11–14 Using the Computer Multiple Regression Using the Solver LINEST Function for Multiple Regression Using MINITAB for Multiple Regression 11–15 Summary and Review of Terms Case 15: Return on Capital for Four Different Sectors 12 Time Series, Forecasting, and Index Numbers 12–1 Using Statistics 12–2 Trend Analysis 12–3 Seasonality and Cyclical Behavior 12–4 The Ratio-to-Moving-Average Method The Template The Cyclical Component of the Series Forecasting a Multiplicative Series 12–5 Exponential Smoothing Methods The Template 12–6 Index Numbers The Consumer Price Index The Template 12–7 Using the Computer Using Microsoft Excel in Forecasting and Time Series Using MINITAB in Forecasting and Time Series 12–8 Summary and Review of Terms Case 16: Auto Parts Sales Forecast 13 Quality Control and Improvement 13–1 Using Statistics 13–2 W. Edwards Deming Instructs 13–3 Statistics and Quality Deming’s 14 Points Process Capability Control Charts Pareto Diagrams Six Sigma Acceptance Sampling Analysis of Variance and Experimental Design Taguchi Methods The Template 13–4 The x Chart The Template 13–5 The R Chart and the s Chart The R Chart The s Chart 13–6 The p Chart The Template 13–7 The c Chart The Template 13–8 The x Chart 13–9 Using the Computer Using MINITAB for Quality Control 13–10 Summary and Review of Terms Case 17: Quality Control and Improvement at Nashua Corporation 14 Nonparametric Methods and Chi-Square Tests 14–1 Using Statistics 14–2 The Sign Test 14–3 The Runs Test—A Test for Randomness Large-Sample Properties The Template The Wald-Wolfowitz Test 14–4 The Mann-Whitney U Test The Computational Procedure 14–5 The Wilcoxon Signed-Rank Test The Paired-Observations Two-Sample Test Large-Sample Version of the Test A Test for the Mean or Median of a Single Population The Template 14–6 The Kruskal-Wallis Test—A Nonparametric Alternative to One-Way ANOVA The Template Further Analysis 14–7 The Friedman Test for a Randomized Block Design The Template 14–8 The Spearman Rank Correlation Coefficient The Template 14–9 A Chi-Square Test for Goodness of Fit A Goodness-of-Fit Test for the Multinomial Distribution The Template Unequal Probabilities The Template 14–10 Contingency Table Analysis—A Chi-Square Test for Independence The Template 14–11 A Chi-Square Test for Equality of Proportions The Median Test 14–12 Using the Computer Using MINITAB for Nonparametric Tests 14–13 Summary and Review of Terms Case 18: The Nine Nations of North America 15 Bayesian Statistics and Decision Analysis 15–1 Using Statistics 15–2 Bayes’ Theorem and Discrete Probability Models The Template 15–3 Bayes’ Theorem and Continuous Probability Distributions The Normal Probability Model Credible Sets The Template 15–4 The Evaluation of Subjective Probabilities Assessing a Normal Prior Distribution 15–5 Decision Analysis: An Overview Actions Chance Occurrences Probabilities Final Outcomes Additional Information Decision 15–6 Decision Trees The Payoff Table 15–7 Handling Additional Information Using Bayes’ Theorem Determining the Payoffs Determining the Probabilities 15–8 Utility A Method of Assessing Utility 15–9 The Value of Information 15–10 Using the Computer The Template 15–11 Summary and Review of Terms Case 19: Pizzas ‘R’ Us Case 20: New Drug Development A References B Answers to Most Odd-Numbered Problems C Statistical Tables