دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Simon Friedrich Kraus (editor). Eduard Krause (editor)
سری:
ISBN (شابک) : 3658298790, 9783658298791
ناشر: Springer Spektrum
سال نشر: 2020
تعداد صفحات: 393
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Comparison of Mathematics and Physics Education I: Theoretical Foundations for Interdisciplinary Collaboration (MINTUS – Beiträge zur mathematisch-naturwissenschaftlichen Bildung) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقایسه آموزش ریاضی و فیزیک I: مبانی نظری برای همکاری بین رشته ای (MINTUS – Beiträge zur mathematisch-naturwissenschaftlichen Bildung) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد، که خروجی یک همکاری با بودجه DAAD بین دانشگاه
سیگن و دانشگاه ملی آموزش هانوی است، مبانی نظری زمینه های
مشترک آموزش ریاضی و فیزیک را مورد بحث و بررسی قرار می دهد و
خلاصه می کند. این دیدگاه بین رشته ای به ویژه معلمانی را که
فقط در یکی از این موضوعات آموزش دیده اند قادر می سازد تا دانش
محتوای آموزشی خود را غنی کنند. نقطه شروع، توصیف ویژگیهای
رشتهها و پیدایش تاریخی آنها و به دنبال آن مطالعات تطبیقی
است. این جلد ویرایش شده سیزده مقاله محرک در جنبه های آموزشی
هر دو رشته را گرد هم می آورد که به طور مشترک توسط محققان با
تجربه از آلمان و ویتنام نوشته شده است.
This volume, which is the output of a DAAD-funded
collaboration between the University of Siegen and the Hanoi
National University of Education, discusses and summarizes
theoretical foundations of common grounds of mathematics and
physics education. This interdisciplinary perspective enables
especially teachers who have only been trained in one of
these subjects to enrich their pedagogical content knowledge.
The starting point is a description of characteristics of the
disciplines and their historical genesis, followed by
comparative studies. This edited volume brings together
thirteen stimulating contributions on educational aspects of
both disciplines written jointly by experienced researchers
from Germany and Vietnam.
Preface References Contents List of Figures List of Tables Authors of this Volume Part I Interdisciplinarity in School and Teacher Training Programs 1 Introduction The Inter TeTra project as a Contribution to Integrated Teacher Training Identification of Suitable Contents for a Scientific Exchange Between Mathematics and Physics Education Structure of this Volume References 2 Interdisciplinarity in School and Teacher Training Programs 1 Interdisciplinarity Teaching and Learning in STEM 2 Advantages and Challenges to Teach Mathematics and Physics in an Integrated Way 2.1 Exemplary Physical PCK for Teaching Math 2.2 Exemplary Mathematical PCK for Teaching Physics 3 Relevant Contents from the Perspective of Mathematics and Physics Didactics 4 Conclusion References Part II Physics and Mathematics as Interwoven Disciplines Introduction to Part II 3 Mathematics in History – From an Empirical to a Formalistic Conception 1 Introduction 2 Euclid 3 Projective Geometry 4 Non-euclidean Geometry 5 Geometry á la Hilbert: the modern formalistic approach References 4 Abstraction as an Essential Characteristic of Modern Mathematics in the Paradigmatic Example of Fermat’s Little Theorem 1 Introduction 2 Fermat’s Little Theorem – Historical Approach and Statement 3 Fermat‘s Little Theorem as a Statement in Group Theory 4 Homomorphisms 5 Generator and Order 6 Coset References 5 Mathematics From the Pupils’ Point of View 1 Introduction 2 An Empirical Investigation of Alan H. Schoenfeld 3 High-School-Students’ Mathematical World-View 4 A Look at School-Lessons References 6 The Mathematization of Physics Throughout History 1 Introduction 2 About the Role of Mathematics in Ancient Natural Theory 3 The Role of Deduction in the Experimental Method of Galilei 3.1 Galilei’s Derivation of the Laws of Uniformly Accelerated Movement 3.2 Galilei’s examination of the theoretically derived laws 3.3 Discussion of Galilei’s approach and resulting didactic conclusions 4 Classical Mechanics – A Theory “More Geometrico” 5 About the Implementation of Calculus in Physics by Analytical Mechanics 6 The Role of Mathematics in Modern Physics: Non-Euclidean Geometries and the General Theory of Relativity 7 Conclusion References 7 The Nature of Science 1 Introduction 2 What is Nature of Science? 3 Why Should We Consider Nature of Science in Class? 4 Misconceptions on Nature of Science 5 Aspects of Relevance for the Comparison of Mathematics and Physics 5.1 Hypotheses, Theories and Laws 5.2 Models and their Relation to Reality 5.3 Models of Knowledge Acquisition 6 Conclusion References 8 On the Relationship between Mathematics and Physics according to Günther Ludwig 1 Introduction 2 The Three Main Parts of a Physical Theory 3 Introductory Example: Physical Pre-Theories for Distance and Time Measurement 4 The Fundamental Domain of the Real Conditions 5 The Structure of a Mathematical Theory 6 The Recording Process 7 Inaccuracies in the Recording Process 8 Conclusion References 9 Example 1 – The Cardanos Formula and the Van der Waals Gas 1 Cardano’s method for the solution of a cubic equation 2 The Cardanic solution formula for complex roots 3 Van der Waals equation 10 Example 2 – Linear Differential Operators, Fourier-Series and the RCL-Circuit 1 Linear differential operators 1.1 Linear differential equations 1.2 Linear differential operators with constant coefficients 1.3 Operator rules 1.4 Finding particular solutions to inhomogeneous equations 1.5 Higher order homogeneous linear ODE’s with constant coefficents 2 Fourier-Series 3 Impulse response of a system being modeled by a linear second order ODE 4 Modelling a series RCL circuit Part III Comparison of Educational Theories Introduction to Part III 11 Individual Concepts in Physics and Mathematics Education 1 Introduction 1.1 Definition of terms 1.2 Reasons for the development of individual concepts – Historical overview 1.3 Why do we have to take individual concepts into account? 2 Individual Concepts in Physics Education 2.1 Examples 2.2 Explore students’ ideas 3 Individual Concepts in Mathematics Education 3.1 Misconceptions in mathematics education 3.2 “Subjective Domains of Experiences” as description of the learning process 3.3 Basic Mental Models (“Grundvorstellungen”) as descriptive, normative and constructive dimensions of specification for the learning process 4 Synthesis References 12 Models and Modeling 1 Models and Modeling in Science 1.1 Models in Science 2 Models and Modeling in Physics Education 2.1 Models in Physics Education 2.2 Functions of Models in Physics Education 2.3 Modeling in Physics Education 3 Models and Modeling in Mathematics Education 3.1 Modeling at school 3.2 Modeling Cycles in Mathematics Education 3.3 Result of a Modeling Process 3.4 Models in Mathematics Education 4 Synthesis References 13 Development of Knowledge in Mathematics and Physics Education 1 Introduction 2 Arguing, Proving and Concept Building in Mathematics Class 2.1 The Terms Arguing, Proving and Concept Building 2.2 The Toulmin Method of Reasoning 2.3 Levels of Argumentation 2.4 Methods of Proving 2.5 Functions of Proving 2.6 Concept Building in Mathematics Class 3 Experimenting and Arguing in Physics Class 3.1 Gathering Insights in Physics and the Didactical Consequences for Physics Education 3.2 Knowledge Acquisition in Physics Education 3.3 The Function of Experiments in Physics Education 3.4 The Relationship between Experimentation and Arguing in Physics Education 4 Comparison References 14 Problem Solving 1 What is a Problem? 2 Problem Solving in Mathematics Education 2.1 Problem solving in the curricular requirements for teaching mathematics 2.2 Pólyas circle of problem solving 2.3 Heurisms concerning Bruder and Collet 2.4 Schoenfelds Categories of Problem Solving 3 Problem Solving in Physics Education 3.1 Problem solving in the curricular requirements for teaching physics 3.2 Knowledge-centered problem solving according Friege 3.3 Basic Ideas as a Problem-Solving Tool in Physics 3.4 Problem solving in learning new concepts 4 Comparison of Theories About Problem Solving in Mathematics and Physics Education References 15 Conclusive Remarks Index