دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: M. A. H. Dempster (editor), Ke Tang (editor) سری: ISBN (شابک) : 1032208171, 9781032208176 ناشر: Chapman and Hall/CRC سال نشر: 2022 تعداد صفحات: 836 [864] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 21 Mb
در صورت تبدیل فایل کتاب Commodities: Fundamental Theory of Futures, Forwards, and Derivatives Pricing (Chapman and Hall/CRC Financial Mathematics Series) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کالاها: تئوری بنیادی آتی، آینده و قیمت گذاری مشتقات (سری ریاضیات مالی چپمن و هال/CRC) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
از آنجایی که منبع اصلی درآمد بسیاری از کشورها از صادرات کالاها به دست میآید، کشف قیمت و انتقال اطلاعات بین بازارهای آتی کالا از موضوعات کلیدی برای ادامه توسعه اقتصادی است. کالاها: نظریه بنیادی قیمت گذاری آتی، آتی و مشتقات، ویرایش دوم نظریه اساسی و قیمت گذاری مشتقات برای بازارهای عمده کالا و همچنین تعامل بین قیمت کالاها را پوشش می دهد. ، اقتصاد واقعی و سایر بازارهای مالی.
پس از یک مقدمه نظری و عملی کاملاً به روز و گسترده، این ویرایش جدید کتاب به پنج بخش تقسیم شده است - پنجم که یک ماده کاملاً جدید است که تحولات پیشرفته را پوشش می دهد.
Since a major source of income for many countries comes from exporting commodities, price discovery and information transmission between commodity futures markets are key issues for continued economic development. Commodities: Fundamental Theory of Futures, Forwards, and Derivatives Pricing, Second Edition covers the fundamental theory of and derivatives pricing for major commodity markets, as well as the interaction between commodity prices, the real economy, and other financial markets.
After a thoroughly updated and extensive theoretical and practical introduction, this new edition of the book is divided into five parts – the fifth of which is entirely new material covering cutting-edge developments.
Cover Half Title Series Page Title Page Copyright Page Table of Contents About the Editors List of Contributors Introduction Section 1 Oil Products Chapter 1 The Volatility Risk Premium in the Oil Market 1.1 Introduction 1.2 Data Description 1.3 The Smile and Term-Structure of VRP 1.3.1 VRP Position-Level Analysis 1.3.2 VRP Portfolio-Level Analysis 1.4 Delta-Hedging in Practice and Transaction Costs 1.5 Hedgers Behavior and VRP Regime Changes 1.6 Conclusions and Further Research References Chapter 2 Determinants of Oil Futures Prices and Convenience Yields 2.1 Introduction 2.2 Oil Price Features 2.2.1 Term Structure of Oil Futures Open Interest 2.2.2 Single-Factor Convenience Yield Models 2.2.2.1 Short Term Pricing Errors 2.2.2.2 Convenience Yields Inferred from the Schwartz–Smith (2000) Model 2.2.2.3 Principal Component Analysis on Convenience Yields 2.3 Three-Factor Model Statement 2.3.1 Dynamics of Spot Prices 2.3.2 Two-Factor Convenience Yield 2.3.3 Results 2.3.4 Comparison with Two‑Factor Models 2.4 Model Interpretation 2.4.1 Explanatory Variable Specification 2.4.1.1 Financial Variables 2.4.1.2 Business Cycle Variables 2.4.1.3 Demand Variables 2.4.1.4 Trading Variables 2.4.2 SVAR Model Statement 2.4.3 Results 2.4.3.1 x Factor Impulse Responses 2.4.3.2 y Factor Impulse Responses 2.4.3.3 p Factor Impulse Responses 2.4.3.4 Forecast Error Variance Decomposition 2.4.3.5 Summary 2.5 Conclusion Acknowledgements References Appendix Three-Factor Model in State Space Form Chapter 3 Pricing and Hedging of Long-Term Futures and Forward Contracts with a Three-Factor Model 3.1 Introduction 3.2 Model 3.3 Estimation of Parameters 3.3.1 Estimation Results 3.3.1.1 NYMEX WTI (Light Sweet Crude Oil) 3.3.1.2 LME Copper 3.3.2 Comparison with Actual Data 3.4 Futures Hedging Techniques 3.4.1 Hedging Error Rate of the Parallel Hedge 3.4.2 Hedging Error Rate of the Delta Hedge 3.5 Stability of the Delta Hedge 3.5.1 Out of Sample Hedges 3.5.2 Hedging Long-Term Forward Contracts 3.6 Measuring the Distribution of Hedging Error Rates 3.6.1 Distribution of Hedging Error Rates 3.7 Conclusion Acknowledgements References Appendix A: Expectation and Covariance Matrix of State Variables Appendix B: The Number of Futures Units Chapter 4 Planning Logistics Operations in the Oil Industry 4.1 Introduction 4.2 The Deterministic DROP Model 4.2.1 Mathematical Formulation of the DROP Model 4.2.2 Objective Function 4.2.3 Constraints 4.2.3.1 Operational Constraints 4.2.3.2 Product Balance Constraints 4.2.3.3 Capacity Constraints 4.2.3.4 Software Implementation 4.3 Stochastic Modelling 4.3.1 The Stochastic DROP Model 4.3.2 Industry Data Analysis and Simulation 4.3.3 Stochastic Model Implementation 4.3.4 Analysis of Stochastic Problem Solutions 4.4 Conclusions and Future Directions Acknowledgements References Appendix Sets Parameters Variables Bounds Chapter 5 Analysing the Dynamics of the Refining Margin: Implications for Valuation and Hedging 5.1 Introduction 5.2 Data and Preliminary Findings 5.2.1 Data Description 5.2.2 Preliminary Findings About the Refining Margin 5.3 Common Long-Term Trend Factor Models 5.3.1 Theoretical Models 5.3.2 Estimation Results 5.4 Crack-Spread Option Valuation 5.4.1 Data 5.4.2 Option Valuation Methodology 5.4.3 Commodity Price Dynamics 5.4.4 Results 5.5 Conclusion References Appendix A: Estimation Methodology Appendix B: Modelling the Crack-Spread Directly Chapter 6 Long-Term Spread Option Valuation and Hedging 6.1 Introduction 6.2 Cointegrated Prices and Mean Reversion of the Spread 6.2.1 Cointegration Tests 6.2.2 Risk Neutral and Market Measure Spread Mean Reversion Tests 6.3 Modelling the Spread Process 6.3.1 Spread Process in the Risk Neutral Measure 6.3.2 Spread Process in the Market Measure 6.3.3 Futures Pricing 6.3.4 Calibration 6.4 Spread Option Pricing and Hedging 6.5 Crack Spread: Heating Oil/WTI Crude Oil 6.5.1 Data 6.5.2 Unit Root and Cointegration Tests 6.5.3 Model Calibration 6.5.4 Futures Spread Option Valuation 6.6 Location Spread: Brent/WTI Crude Oil 6.6.1 Data 6.6.2 Unit Root and Cointegration Tests 6.6.3 Model Calibration 6.6.4 Futures Spread Option Valuation 6.7 Conclusion Acknowledgements References Appendix Two Price Method of Simulating Spreads Section 2 Other Commodities Chapter 7 A Rough Multi-Factor Model of Electricity Spot Prices 7.1 Introduction 7.2 The Data 7.3 Roughness in Electricity Prices 7.4 A Rough Multi-Factor Modelling Framework 7.4.1 Modelling the Seasonal Component 7.4.2 Modelling the Base Component 7.4.2.1 Models with and without Characterisic Time Scale in Their Autocorrelations 7.4.2.2 Stochastic Volatility: Marginal Distribution of the Base Component 7.4.2.3 An Alternative Rough Component 7.4.3 Modelling the Spike Component 7.4.4 Estimation of the Rough Multi-Factor Model 7.4.4.1 Estimating the Roughness Index of Time Series of Electricity Prices 7.4.4.2 Estimating the Mean Reversion Parameter λ 7.5 Implications of a Rough Model of Electricity Prices 7.5.1 Arbitrage 7.5.2 Forecasting 7.5.2.1 Forecasting the BSS Process 7.5.2.2 Forecasting the fBm-OU Process 7.6 Empirical Analysis 7.6.1 Roughness of Electricity Price Series 7.6.2 Characteristic Time Scale of Electricity Price Series 7.6.3 Marginal Distribution of the Base Signal 7.6.4 Forecasting 7.7 Conclusion Acknowledgements References Appendix A: An Empirical Case Study: The German EEX Market A.1 De-seasonalizing the Data A.2 Filtering the Jump Process A.3 Analysis of the Residual Base Signal A.4 Forecasting the Base Signal Appendix B: More Estimators of the Roughness Index Appendix C: Estimating the Degree of Roughness in Practice C.1 Roughness Estimation in the Presence of Spikes C.2 Roughness Estimation using Low-Frequency Data C.3 Lessons from the Simulation Experiment Chapter 8 Investing in the Wine Market: A Country-Level Threshold Cointegration Approach 8.1 Introduction 8.2 Wine: The Theoretical Framework 8.3 The Mediobanca Index: Evidence on Stock Performance 8.3.1 The Data 8.3.2 Performance 8.4 Econometric Methodology 8.5 Empirical Results 8.6 Conclusion References Chapter 9 Cross-Market Soybean Futures Price Discovery: Does the Dalian Commodity Exchange Affect the Chicago Board of Trade? 9.1 Introduction 9.2 The Data 9.2.1 The Construction of Continuous Price Series 9.2.2 Calculation of Futures Returns 9.3 The SVAR Model 9.3.1 Model Setup 9.3.2 Estimation Results 9.3.3 Impulse Response Analysis 9.3.4 Forecasted Error Variance Decomposition 9.4 The VEC Model 9.4.1 Model Setup 9.4.2 Estimation Results 9.4.3 Impulse Response and FEVD 9.5 Conclusion Acknowledgements References Chapter 10 The Structure of Gold and Silver Spread Returns 10.1 Introduction 10.2 Data 10.3 Rescaled Adjusted Range Analysis 10.4 Trading Implications 10.5 Conclusions References Chapter 11 Gold and the U.S. Dollar: Tales from the Turmoil 11.1 Introduction 11.2 The Dataset 11.3 Some Structural Evidence on Volatility Spillovers 11.4 A Look at the Tails 11.5 Conclusion Acknowledgements References Chapter 12 Application of a TGARCH-Wavelet Neural Network to Arbitrage Trading in the Metal Futures Market in China 12.1 Introduction 12.2 Model Development: TGARCH-WNN Statistical Arbitrage 12.2.1 Mean Spread with TGARCH 12.2.2 Wavelet Theory and Chaotic Properties of Time Series 12.2.3 Wavelet Neural Networks 12.3 Sample Selection 12.4 Empirical Study 12.4.1 Application of the TGARCH Model 12.4.2 Testing Chaotic Properties Using Lyapunov Exponents 12.4.3 Robustness Check of the TGARCH-WNN, Backpropagation Neural Network and Historical Optimal Methods 12.4.3.1 Comparison of Prediction Accuracy 12.4.3.2 Comparison of Rate of Return under Different Circumstances 12.4.3.3 The Impact of Commission 12.5 Conclusion Acknowledgements References Chapter 13 Multivariate Continuous-Time Modeling of Wind Indexes and Hedging of Wind Risk 13.1 Introduction 13.2 Data Presentation 13.3 Model Description 13.3.1 General Model Considerations 13.3.2 A Gamma Model 13.3.2.1 Distribution of Pn(t) in the Gamma Model 13.3.2.2 Covariance between Wind Indexes in the Gamma Model 13.3.2.3 Identification of Parameters in the Gamma Model 13.3.3 A Lognormal Model 13.3.3.1 Distribution of Pi(t) in the Lognormal Model 13.3.3.2 Covariance between Wind Indexes in the Lognormal Model 13.3.3.3 Identification of Parameters in the Lognormal Model 13.3.4 Comparison of the Gamma and Lognormal Model 13.4 Estimation Results 13.4.1 Gamma Model 13.4.2 Lognormal Model 13.5 Hedging Wind Power Production 13.5.1 Perfect Hedging of Volumetric Risk Using Tailor-Made Wind Power Futures 13.5.2 Minimum Variance Hedge of a Tailor-Made WPF Contracts Portfolio 13.5.2.1 In-Sample Hedging Effectiveness 13.5.2.2 Out-of-Sample Hedging Effectiveness 13.5.2.3 Risk Premium of Wind Power Futures 13.6 Conclusion Acknowledgment Disclosure Statement Funding References Appendix: Theoretical Results for the Gamma Model Section 3 Commodity Prices and Financial Markets Chapter 14 Short-Horizon Return Predictability and Oil Prices 14.1 Introduction 14.2 Oil Price, the Business Cycle and Stock Returns 14.2.1 Oil Price and the Macroeconomy 14.2.2 Oil Price and the Financial Market 14.2.3 Stock Returns and the Business Cycle 14.2.4 Measuring Oil Price Shocks 14.2.5 Oil Price, the Business Cycle and Stock Returns 14.3 Short-Horizon Predictability of Stock Returns 14.4 Out-of-Sample Predictability of Stock Returns 14.5 Long-Horizon Predictability of Stock Returns 14.6 Implications for the Cross Section of Expected Returns 14.7 Conclusions Acknowledgements References Appendix: Tests for Out-of-Sample Predictability Chapter 15 Time-Frequency Analysis of Crude Oil and S&P 500 Futures Contracts 15.1 Introduction 15.2 Literature Review 15.3 Data 15.4 Methodology 15.4.1 Cross-Spectral Analysis 15.4.2 Wavelets 15.4.3 Cross Wavelets 15.4.4 Cross Wavelet Phase Angles 15.5 Empirical Results 15.5.1 Cospectral Densities 15.5.2 Wavelets 15.6 Conclusions Acknowledgements Software Acknowledgements References Chapter 16 Sectoral Stock Return Sensitivity to Oil Price Changes: A Double-Threshold FIGARCH Model 16.1 Introduction 16.2 Data and Methodology 16.2.1 Data Description 16.2.2 Methodology and Models 16.2.2.1 The Return and Conditional Volatility Generating Processes 16.2.2.2 The Estimated Model 16.2.3 Testable Hypotheses 16.3 Empirical Findings 16.3.1 Tests of Model Specification 16.3.2 Tests of Asymmetry 16.3.3 Sector Analysis 16.3.3.1 Analysis of Oil Effects (Roil Coefficient) Below and Above the Threshold 16.3.3.2 Summary of Sector Returns 16.3.3.3 Economic Significance 16.3.4 The FIGARCH Volatility Equation 16.4 Conclusions Acknowledgements References Appendix: Threshold and Delay Parameter Values Chapter 17 Long–Short Versus Long-Only Commodity Funds 17.1 Introduction 17.2 Sources of Alpha in Commodity Markets 17.3 Temporal Performance Measures 17.4 A Relative-Value Commodity Approach 17.5 Conclusions References Chapter 18 The Dynamics of Commodity Prices 18.1 Introduction 18.2 Models and Estimation 18.2.1 Spot Price Models 18.2.2 Estimation Approach 18.3 Data and Empirical Results 18.3.1 Data 18.3.2 Univariate Analysis 18.3.3 Cross-Commodity Market Analysis 18.3.4 Commodity and Equity Markets 18.4 Economic Implications 18.4.1 Options Valuation 18.4.2 Options Hedging 18.5 Conclusions Acknowledgements References Appendix: MCMC Estimation Details Chapter 19 Short-Term and Long-Term Dependencies of the S&P 500 Index and Commodity Prices 19.1 Introduction 19.2 Brief Literature Review 19.3 Measuring Stock and Commodities Market Dependencies Using Wavelet Squared Coherency 19.4 Data 19.4.1 Commodity and Stock Indexes 19.4.2 Data Description 19.5 Empirical Analysis of Comovements 19.6 Conclusion Acknowledgements References Chapter 20 Commodity Markets through the Business Cycle 20.1 Introduction 20.2 The Reaction of Commodity Markets to Economic News 20.2.1 Measuring the Impact of Price Discovery on Asset Prices 20.2.2 Database of News 20.2.3 An Example: S&P 500, US 10-Year and USD 20.2.4 Commodity by Commodity Analysis 20.2.4.1 Database for Commodity Prices 20.2.4.2 Precious Metals 20.2.4.3 Industrial Metals 20.2.4.4 Energy 20.2.4.5 Agricultural Commodities 20.2.5 Rolling Analysis 20.3 Economic Regimes and Commodity Markets as an Asset Class 20.3.1 Measuring the Business Cycle 20.3.2 To Which Business Cycle Are the Commodity Markets Related? 20.3.3 Commodity Performances Depending on the Nature of Each Economic Regime 20.4 Conclusion References Appendix: Database of News Chapter 21 A Hybrid Commodity and Interest Rate Market Model 21.1 Introduction 21.2 The Commodity LIBOR Market Model 21.2.1 The Interest Rate Market 21.2.2 The Commodity Market 21.3 Calibration with Time-Dependent Volatilities 21.4 Futures/Forward Relation and Convexity Correction 21.5 Merging Interest Rate and Commodity Calibrations 21.6 Real Data Example 21.7 Pricing Spread Options 21.8 Conclusion Acknowledgements References Appendix: Volatility Integrals Chapter 22 Evaluation of Gas Sales Agreements with Indexation Using Tree and Least-Squares Monte Carlo Methods on Graphics Processing Units 22.1 Introduction 22.2 The Pricing Framework and the Indexation Principle 22.3 Gas Sales Agreements with Indexation 22.4 The Evaluation Using Trinomial Trees 22.4.1 The Structure of a Trinomial Tree 22.4.2 Pricing Algorithm 22.5 The Evaluation Using LSMC 22.6 Evaluation on GPUs 22.6.1 General-Purpose Computing on GPUs 22.6.2 LSMC on GPUs 22.7 Numerical Examples 22.7.1 Contract Values 22.7.2 The LSMC Algorithm on the GPU 22.7.3 Accuracy of the Tree Algorithm 22.7.4 Value Surfaces and Decision Surfaces from the Tree Algorithm 22.7.5 Contract Values with Respect to Parameters 22.7.6 Self-Indexed Swing Options 22.8 Conclusion Acknowledgements Disclosure Statement ORCID References Appendix A: Construction of the Two-Dimensional Trinomial Tree Appendix B: Notes on the Implementation of the Tree Algorithm on GPUs Section 4 Electricity Markets Chapter 23 Modeling the Distribution of Day-Ahead Electricity Returns: A Comparison 23.1 Introduction 23.2 Data and Preliminary Analysis 23.3 Distributions of Electricity Returns 23.4 Fitting the Empirical Probability Densities 23.5 Robustness 23.6 Conclusion References Chapter 24 Stochastic Spot Price Multi-Period Model and Option Valuation for Electrical Markets 24.1 Introduction 24.2 Spot Price Multi-Period Model 24.3 Model Calibration 24.3.1 The Price Forward Curve 24.3.2 The Short-Term Process 24.3.3 The Long-Term Process 24.3.4 The Term Structure of Volatility 24.4 Scenario Generation and Valuation of Structured Products 24.4.1 Estimation of the Volatility Surface 24.5 Structured Product Valuation 24.5.1 Valuation and Risk Analysis: TS-Energy 24.5.2 Virtual Power Plant Valuation 24.6 Conclusion Acknowledgements References Chapter 25 Modelling Spikes and Pricing Swing Options in Electricity Markets 25.1 Introduction 25.2 Properties of the Model for Spot Prices 25.2.1 The Spike Process 25.2.2 The Combined Process 25.2.3 Approximations 25.3 Option Pricing 25.3.1 Pricing Path-Independent Options 25.3.2 Pricing Options on Forwards 25.3.3 Pricing Options on Forwards with a Delivery Period 25.4 Pricing Swing Options 25.4.1 The Grid Approach 25.4.2 Numerical Results References Chapter 26 Efficient Pricing of Swing Options in Lévy-Driven Models 26.1 Introduction 26.2 Lévy Processes: Basic Facts 26.2.1 General Definitions 26.2.2 Regular Lévy Processes of Exponential Type 26.2.3 The Wiener−Hopf Factorization 26.3 The Multiple Optimal Stopping Problem for Swing Options 26.4 The Finite Difference Scheme for Pricing Swing Options 26.5 Pricing Swing Options Using the Wiener−Hopf Approach 26.6 Numerical Results Acknowledgements References Chapter 27 The Valuation of Clean Spread Options: Linking Electricity, Emissions and Fuels 27.1 Introduction 27.2 The Bid Stack: Price Setting in Electricity Markets Assumption 27.2.1 27.3 Risk-Neutral Pricing of Allowance Certificates 27.3.1 The Market Emission Rate 27.3.2 The Pricing Problem 27.3.3 An FBSDE for the Allowance Price Assumption 27.3.2 27.3.4 Existence of a Solution to the Pricing Problem 27.4 Valuing Clean Spread Options 27.5 A Concrete Two-Fuel Model 27.5.1 The Bid Stack 27.5.2 The Emission Stack 27.5.3 Specifying the Exogenous Stochastic Factors 27.6 Numerical Analysis 27.6.1 Choice of Parameters 27.6.2 Case Study I: Impact of the Emission Market 27.6.3 Case Study II: Impact of Fuel Price Changes 27.6.4 Case Study III: Comparison with Reduced-Form 27.6.5 Case Study IV: Cap-and-Trade vs. Carbon Tax 27.7 Conclusion Acknowledgements References Appendix A: Numerical Solution of the FBSDE A.1 Candidate Pricing PDE A.2 An Implicit–Explicit Finite Difference Scheme Appendix B: Numerical Calculation of Spread Prices B.1 Time Discretization of SDEs B.2 Monte Carlo Calculation of Option Prices Chapter 28 Is the EUA a New Asset Class? 28.1 Introduction 28.2 Stylised Facts of Asset Returns 28.3 Data 28.4 Results 28.4.1 Data Distribution 28.4.2 Correlation Facts 28.4.3 Volatility-Related Features 28.4.4 Commodity Features 28.5 Conclusions Acknowledgements References Section 5 Contemporary Topics Chapter 29 Volatility Is Rough 29.1 Introduction 29.1.1 Volatility Modeling 29.1.2 Fractional Volatility 29.1.3 The Shape of the Implied Volatility Surface 29.1.4 Main Results and Organization of the Paper 29.2 Smoothness of the Volatility: Empirical Results 29.2.1 Estimating the Smoothness of the Volatility Process 29.2.2 DAX and Bund Futures Contracts 29.2.3 S&P and NASDAQ Indices 29.2.4 Other Indices 29.2.5 Distribution of the Increments of the Log-Volatility 29.2.6 Does H Vary Over Time? 29.3 A Simple Model Compatible with the Empirical Scaling of the Volatility 29.3.1 Specification of the RFSV Model 29.3.1.1 RFSV vs. FSV 29.3.2 RFSV Model Autocovariance Functions 29.3.3 RFSV vs. FSV Again 29.3.4 Simulation-Based Analysis of the RFSV Model 29.4 Spurious Long Memory of Volatility? 29.5 Forecasting Using the RFSV Model 29.5.1 Forecasting Log-Volatility 29.5.2 Variance Prediction 29.6 Conclusion Acknowledgements Disclosure Statement Funding References Appendix A: Proofs A.1 Proof of Proposition 29.3.1 A.2 Proof of Corollary 29.3.1 Appendix B: Estimations of H B.1 On Different Indices B.2 On Different Time Intervals Appendix C: The Effect of Smoothing C.1 Numerical Example Chapter 30 Algorithmic Trading in a Microstructural Limit Order Book Model 30.1 Introduction 30.2 Model Setup 30.2.1 Order Book Representation 30.2.2 Market Maker Strategies 30.2.2.1 Control of the Market Maker 30.2.2.2 Controlled Order Book 30.3 Presentation of the Market-Making Problem. Theoretical Resolution 30.3.1 Definition of the Market-Making Problem and Well-Posedness of the Value Function 30.3.2 Markov Decision Process Formulation of the Market-Making Problem 30.3.3 Proof of Theorem 30.3.1 30.4 Numerical Resolution of the Market-Making Control Problem 30.4.1 Framework 30.4.2 Presentation and Rate of Convergence of the Qknn Algorithm 30.4.3 Qknn Algorithm Applied to the Order Book Control Problem (30.1) 30.4.3.1 Training Set Design 30.4.4 Numerical Results 30.4.4.1 Case 1: The Market Maker only Place Orders at the Best Ask and Best Bid 30.4.4.2 Case 2: The Market Maker Place Orders on the First Two Limits of the Orders Book 30.5 Model Extension to Hawkes Processes 30.6 Conclusion Acknowledgments Disclosure Statement ORCID References Appendices Appendix A: Proof of Theorem 30.4.1 and Corollary 30.4.1 Appendix B: Zador’s Theorem Chapter 31 Cryptocurrency Liquidity During Extreme Price Movements: Is There a Problem with Virtual Money? 31.1 Introduction 31.2 Cryptocurrency Data Description 31.2.1 Cryptocurrency Data Management 31.3 Empirical Results 31.3.1 The Relationship between Cryptocurrency Liquidity and EPM 31.3.2 The Implications of Cryptocurrency Traders’ Activity on EPM 31.3.3 The Magnitude of EPM 31.3.4 The Activity of CTs during Normal Trading and in EPM 31.3.5 Herding Behaviour during EPM 31.3.6 Profitability of CTs during EPM 31.3.7 CTs Activity during Future EPM 31.4 Robustness Checks 31.5 Conclusion Disclosure Statement References Appendix Cryptocurrency Description Chapter 32 Identifying the Influential Factors of Commodity Futures Prices through a New Text Mining Approach 32.1 Introduction 32.2 Literature Review 32.2.1 Influential Factors of Commodity Futures Markets 32.2.2 Topic Models in Financial Text Mining 32.3 Proposed DP-Sent-LDA Model 32.3.1 Sent-LDA 32.3.2 DP-Sent-LDA 32.3.2.1 Concept of DP-Sent-LDA 32.3.2.2 Generative Process of DP-Sent-LDA 32.3.2.3 Learning Algorithm of DP-sent-LDA 32.4 Data 32.5 Empirical Analysis 32.5.1 Implementation of DP-Sent-LDA 32.5.2 Comparison of Sent-LDA and DP-Sent-LDA on Predictive Power 32.5.3 The Identified Influential Factors of Commodity Futures Prices 32.5.3.1 The Influential Factor System of Commodity Futures Prices 32.5.3.2 The Relative Importance of the Influential Factors 32.5.4 Regression Analysis of the Effectiveness of the Influential Factors 32.5.4.1 Proxy Variable Selection Results 32.5.4.2 Regression Analysis Results 32.6 Conclusions Disclosure Statement Funding ORCID References Chapter 33 Classification of Flash Crashes Using the Hawkes (p,q) Framework* 33.1 Introduction 33.2 Data Sets 33.2.1 The 10-Year U.S. Treasury Note Futures Contract 33.2.2 The E-Mini S&P500 Futures Contract 33.2.3 Foreign Exchange Spot Interbank Market 33.2.4 The Ethereum Cryptocurrency Market 33.2.5 Sample Selection and Summary 33.3 The Hawkes Model with Time-Dependent Endogenous Dynamics 33.4 Calibration to Mid-Price Data—the Hawkes(p,q) Model 33.5 Endogeneity of Financial Markets around Flash Crashes 33.5.1 Preprocessing of Timestamps and Calibration Specifics 33.5.2 The E-Mini S&P 500 Futures Crash in May 2010 33.5.3 The U.S. Treasury Bond Yield Crash in October 2014 33.5.4 The US-Dollar Crash in March 2015 33.5.5 The New Zealand Dollar Crash in August 2015 33.5.6 The South African Rand Crash in January 2016 33.5.7 The British Pound Crash in October 2016 33.5.8 The Ether Crash in June 2017 33.5.9 The EUR/USD Crash in December 2017 33.5.10 The USD/JPY Crash in January 2019 33.6 Residual Analysis and Refined Treatment of Exogenous Clustering 33.6.1 Residual Analysis 33.6.2 Comparison to Alternative Models 33.7 Conclusion Disclosure Statement References Appendices Appendix A: The EM Algorithm for the Estimation of the Hawkes(p,q) Process Appendix B: Estimating Transient Criticality—A Simulation Study Appendix C: The MCEM Algorithm for the Estimation of the MA-Hawkes(p,q) Process Epilogue