دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ویرایش: نویسندگان: Michael A. Liberman سری: ISBN (شابک) : 3030851389, 9783030851385 ناشر: Springer سال نشر: 2021 تعداد صفحات: 620 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Combustion Physics: Flames, Detonations, Explosions, Astrophysical Combustion and Inertial Confinement Fusion به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک احتراق: شعله ها، انفجارها، انفجارها، احتراق اخترفیزیکی و همجوشی محصور اینرسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب آخرین دستاوردها و کارهای تحقیقاتی اصلی در فیزیک فرآیندهای احتراق و کاربرد روشهای توسعهیافته در فیزیک احتراق برای مسائل اخترفیزیکی سوزاندن ستارهها، انفجار ابرنواخترها و همجوشی گرما هستهای محدود را ارائه میدهد. تمام مطالب کتاب به صورت مختصر و در دسترس ارائه شده است، اما در عین حال درونی عمیق فیزیکی در پدیده های در نظر گرفته شده ارائه می دهد. این یک دوره نظری موثر با مفاهیم عملی مستقیم در زمینه های مهندسی توسعه موتور، تولید انرژی، مسائل ایمنی ذاتی احتراق زمینی، و همچنین در احتراق حرارتی هسته ای در همجوشی اینرسی است. این کتاب برای دانشجویان دانشگاه، Ph.D. دانشجویان و مهندسان، و همچنین متخصصان احتراق، تحقیقات مرتبط با انرژی، اخترفیزیک و محققان در زمینه های همسایه.
This book provides the latest achievements and original research work in physics of combustion processes and application of the methods developed in combustion physics for astrophysical problems of stars burning, supernovae explosions and a confined thermonuclear fusion. All the materials in the book are presented in a concise and easily accessible way, but at the same time provides a deep physical inside in the phenomena considered. It is an effective theoretical course with the direct practical implications in engineering fields of engine’s development, energy production, safety issues inherent to terrestrial combustion, as well as in thermonuclear combustion in the inertial fusion. This book is aimed at university students, Ph.D. students and engineers, as well as professionals in combustion, energy-related research, astrophysics and researchers in neighboring fields.
Preface Contents 1 Combustion Chemistry 1.1 Chemical Reactions 1.2 Non-branching Chain Reaction: Hydrogen Chlorine 1.3 Formation Mechanisms of Nitrogen Oxides 1.3.1 Thermal NO Mechanism 1.3.2 Prompt NO Mechanism 1.3.3 Fuel NO 1.3.4 Flames of the First-Order Reaction 1.4 Chain-Branching Reactions: Explosions 1.4.1 Hydrogen–Oxygen Explosions: Explosion Limits 1.4.2 Oxidation and Explosions of Hydrocarbons References 2 Self-Accelerating Reactions 2.1 A One-Step Chemical Reaction Model 2.2 Elementary Theory of Thermal Explosion 2.3 Thermal Self-Ignition 2.4 Frank-Kamenetskii Transformation 2.5 Semenov Theory of Thermal Explosions 2.6 Frank-Kamenetskii Theory of Thermal Explosion 2.7 Spark Ignition and Minimum Ignition Energy 2.8 Induction Time: One-Step and Detailed Chemical Models 2.8.1 Hydrogen–Air: A Single-Step and Detailed Chemical Models 2.8.2 Methane–Air: A Single-Step and Detailed Chemical Models References 3 Laminar Flames 3.1 Reaction Waves 3.2 Velocity and Thickness of Laminar Flames 3.3 Temperature and Concentration Distributions 3.4 Zel’dovich–Frank-Kamentskii Theory: Laminar Flame Speed 3.5 Consequences of the Formula for Normal Flame Velocity 3.6 Laminar Non-premixed Flames 3.6.1 Non-premixed Laminar Flames 3.6.2 Combustion of Liquid Fuel Droplets References 4 Hydrodynamics of Premixed Laminar Flames 4.1 Flame Hydrodynamics: Combustion Regimes 4.2 Complete System of Equations for Propagating Flame 4.3 Isobaric Approximation 4.4 Theory of Planar Flames References 5 Flame Instabilities 5.1 Darrieus-Landau Instability of Zero Thickness Flame 5.2 Hydrodynamic Instability; Flames of Finite Thickness 5.3 Flame in a Gravitational Field; Rayleigh–Taylor Instability 5.3.1 Comparison with Numerical Simulations 5.4 Thermal-Diffusive Instability 5.4.1 Thermal Diffusive Instability (Le =1) 5.4.2 Thermal Diffusive Instability of Solid Propellant 5.5 Flame Dynamics; Evolution Equation 5.5.1 Evolution Equation; Infinitely Thin Flame Front 5.5.2 Evolution Equation; Influence of Finite Flame Thickness 5.5.3 Evolution Equation; Arbitrary Equation of State 5.5.4 Influence of Compressibility References 6 Flame–Acoustic Interaction: Thermoacoustic and Parametric Instabilities 6.1 Early Experimental Research on the Flame–Acoustic Interaction 6.2 Flame Stabilization by Acoustic Waves 6.3 Parametric Flame Instability and Sound Waves 6.4 Experimental Study of the Darrieus–Landau Instability 6.5 Flame–Acoustic Interaction: Thermoacoustic Instabilities 6.6 Applicability of Analytical Models References 7 Interaction of Flames with Weak Shocks 7.1 Linear Theory of Flame–Shock Interaction 7.2 Nonlinear Effects of Flame–Shock Interactions 7.3 Hydrodynamic Instability of Planar Flame in Closed Chambers References 8 Dynamics of Curved Flames Propagating in Tubes 8.1 Nonlinear Stage of Instability; Cellular Flame’s Structure 8.2 Nonlinear Equation for Curved Stationary Flames 8.3 Velocity of 2D Curved Flame 8.4 Velocity and Shape of 2D Flame References 9 Dynamics of Flames Under Confinement 9.1 Hydrodynamic Instability of Planar Flame in Closed Chambers 9.2 Numerical Simulations of the DL Instability in Closed Tubes 9.2.1 Flames of the First-Order Reaction 9.2.2 Flames of the Third-Order Reaction 9.3 Flammability Limits and Flame Quenching 9.3.1 Flammability Limits 9.3.2 Heat Losses and Flame Quenching 9.4 Tulip Flames. Effect of the Boundary Layer 9.4.1 Experimental, Theoretical, and Numerical Studies 9.4.2 Mechanisms of the Tulip Flame Formation 9.4.3 Numerical Simulations and Mechanism of Tulip Flame Formation References 10 Flame in a Gravitational Field 10.1 The Rayleigh–Taylor Instability 10.2 Velocities of Rising Bubbles 10.3 Curved Flames in Vertical Tubes 10.4 Flame in Horizontal Tubes References 11 Stability Limits; Spherically Expanding Flames 11.1 Flame Instabilities in Wide Tubes 11.2 Morphology of Unconfined Spherically Expanding Flames 11.3 Fractal Structure and Self-similar Regime 11.3.1 Fractal Dimension of 2D and 3D Expanding Flames 11.3.2 Stability of Self-similar Spherically Expanding Flames 11.4 Self-acceleration and Fractal Structure of Expanding Flames References 12 Detonation Waves 12.1 Evolutionarity Condition and Possible Combustion Modes 12.2 Structure of Detonation Waves; Detonation Adiabatic 12.3 Velocity of a Detonation Wave 12.4 The Chapman-Jouguet Detonation 12.5 Possible Modes of Exothermal Reactions Propagation 12.6 CJ-Deflagration and CJ-Detonation 12.7 Explosions and Spherically Expanding Detonation 12.8 Strong Explosion in Homogenous Atmosphere References 13 Ignition 13.1 Spark Ignition and Minimum Ignition Energy 13.2 Zel’dovich’s Gradient Mechanism; Spontaneous Reaction Wave 13.3 Combustion Modes Initiated by Hot Spots 13.4 Ignition by Transient Energy Deposition 13.4.1 Rapid Energy Deposition—Microsecond Time Scale 13.4.2 Millisecond Time Scale of Energy Deposition 13.4.3 Energy of Ignition References 14 Regimes of Premixed Flames 14.1 Regimes of Premixed Turbulent Combustion 14.2 G-Equation 14.3 Velocity of Turbulent Flames 14.3.1 Modeling of the Premixed Turbulent Flame Speed 14.3.2 Effects of Darrieus–Landau Instability and Thermal Expansion 14.3.3 Numerical Simulations of Turbulent Combustion 14.4 Influence of Chemical Reactions on Turbulent Transport 14.4.1 Turbulent Flux 14.4.2 Comparison with Numerical Simulations References 15 Flame Acceleration and Deflagration-To-Detonation Transition 15.1 Explosions and Detonation 15.2 Experimental Study of DDT in Highly Reactive Mixtures 15.3 Flame Acceleration in Channels with No-Slip Walls 15.4 Mechanism of Deflagration-to-Detonation Transition (DDT) 15.4.1 Numerical Simulations of DDT 15.4.2 Flame Acceleration and DDT in 2D Channel with Smooth Walls 15.4.3 Flame Acceleration and DDT in 3D Channels 15.4.4 About Interpretation of Shadow/Schlieren Photographs 15.5 Effect of Wall Roughness and Obstacles on the Run-Up Distance 15.6 Unconfined Deflagration-To-Detonation Transition References 16 Effects of Radiation on Particle-Laden Combustion 16.1 Flame Velocity in Particle-Laden Mixtures. Effect of Radiation 16.1.1 Flame Propagation Through Uniformly Dispersed Particles 16.1.2 Flame Structure; Radiation Dominated Regime 16.2 Nonuniform Distribution of Suspended Particles 16.3 Turbulent Clustering and Multipoint Radiation Induced Ignition 16.3.1 Radiation Absorption Coefficient and Turbulent Clustering 16.3.2 Effect of Turbulent Clustering on Radiation Heat Transfer 16.3.3 Turbulent Clustering: Effective Radiation Absorption Length 16.3.4 Radiation-Induced Multipoint Secondary Explosions 16.3.5 Impact of Radiation in Vapor Cloud and Dust Explosions References 17 Astrophysical Combustion 17.1 Compact Objects: The Birth and the Death of Stars 17.2 The Mysterious Stars: Numerical Models of SN Ia Explosion 17.3 Ignition and the Early Stage of White Dwarfs Explosion 17.3.1 Ignition of Self-accelerating Reaction in White Dwarfs 17.3.2 Flame Ignition in the White Dwarf Core 17.4 Effect of the Flame Instabilities 17.4.1 Dynamics of the Flame for Arbitrary Equation of State 17.4.2 Hydrodynamic Instability of the Flame in White Dwarfs 17.4.3 Flame Speed in White Dwarfs and the DL Instability 17.5 Thermal-Diffusion Instabilities of the Flame in White Dwarfs 17.5.1 A Steady Flame in White Dwarfs 17.5.2 Thermal-Diffusion Instability and Flame Pulsation in White Dwarfs 17.6 Instability of Thermonuclear Detonation in White Dwarfs 17.6.1 Pulsating Instability of Detonation 17.6.2 Thermonuclear Detonations. Spectrum of Instabilities 17.7 Rayleigh–Taylor Instabilities, Bubbles and Turbulence 17.7.1 Nonlinear Stage of the RT Instability 17.7.2 Multipoint Ignition and Bubbles in SN Ia Explosions References 18 Ablation Fronts in Inertial Confinement Fusion 18.1 Inertial Confinement Fusion 18.2 Rayleigh–Taylor Instability; Linear Stage, Discontinuity Model 18.2.1 RT Instability of Ablatively Accelerated Plasma 18.2.2 Discontinuity Model: Long-Wavelength Perturbations 18.2.3 Discontinuity Model: Short Wavelength Perturbations 18.3 Effect of Compressibility 18.3.1 Structure of Ablation Wave 18.3.2 Growth Rate of RT and DL Instabilities for a Finite Mach Numbers 18.3.3 WKB Model: Stabilization of RT Instability by Convection 18.4 Nonlinear Rayleigh–Taylor Instability in the Laser Ablation References Appendix A Conversion Formulas and Constants Fundamental Constants Appendix B Combustion Characteristics of Some Mixtures Index