دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Istvan Mezo
سری: Discrete Mathematics and Its Applications
ISBN (شابک) : 1138564850, 9781138564855
ناشر: Chapman and Hall/CRC
سال نشر: 2019
تعداد صفحات: 499
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Combinatorics and Number Theory of Counting Sequences (Discrete Mathematics and Its Applications) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترکیبات و نظریه اعداد دنباله های شمارش (ریاضیات گسسته و کاربردهای آن) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Combinatorics and Number Theory of Counting Sequences is an introduction to the theory of finite set partitions and to the enumeration of cycle decompositions of permutations.
The presentation prioritizes elementary enumerative proofs. Therefore, parts of the book are designed so that even those high school students and teachers who are interested in combinatorics can have the benefit of them. Still, the book collects vast, up-to-date information for many counting sequences (especially, related to set partitions and permutations), so it is a must-have piece for those mathematicians who do research on enumerative combinatorics.
In addition, the book contains number theoretical results on counting sequences of set partitions and permutations, so number theorists who would like to see nice applications of their area of interest in combinatorics will enjoy the book, too.
Features
Cover Half Title Series Page Title Page Copyright Page Dedication Contents Foreword About the Author Part I: Counting sequences related to set partitions and permutations 1. Set partitions and permutation cycles 1.1 Partitions and Bell numbers 1.2 Partitions with a given number of blocks and the Stirling numbers of the second kind 1.3 Permutations and factorials 1.4 Permutation with a given number of cycles and the Stirling numbers of the first kind 1.5 Connections between the first and second kind Stirling numbers 1.6 Some further results with respect to the Stirling numbers 1.6.1 Rhyme schemes 1.6.2 Functions on finite sets 1.7 d-regular partitions 1.8 Zigzag permutations 1.8.1 Zigzag permutations and trees Exercises Outlook 2. Generating functions 2.1 On the generating functions in general 2.2 Operations on generating functions 2.2.1 Addition and multiplication 2.2.2 Some additional transformations 2.2.3 Differentiation and integration 2.2.4 Where do the name generating functions come from? 2.3 The binomial transformation 2.4 Applications of the above techniques 2.4.1 The exponential generating function of the Bell numbers 2.4.2 Dobi´nski’s formula 2.4.3 The exponential generating function of the second kind Stirling numbers 2.4.4 The ordinary generating function of the second kind Stirling numbers 2.4.5 The generating function of the Bell numbers and a formula for {n, k} 2.4.6 The exponential generating function of the first kind Stirling numbers 2.4.7 Some particular lower parameters of the first kind Stirling numbers 2.5 Additional identities coming from the generating functions 2.6 Orthogonality 2.7 Horizontal generating functions and polynomial identities 2.7.1 Special values of the Stirling numbers of the first kind - second approach 2.8 The Lah numbers 2.8.1 The combinatorial meaning of the Lah numbers 2.9 The total number of ordered lists and the horizontal sum of the Lah numbers 2.10 The Hankel transform 2.10.1 The Euler-Seidel matrices 2.10.2 A generating function tool to calculate the Hankel transform 2.10.3 Another tool to calculate the Hankel transform involving orthogonal polynomials Exercises Outlook 3. The Bell polynomials 3.1 Basic properties of the Bell polynomials 3.1.1 A recursion 3.1.2 The exponential generating function 3.2 About the zeros of the Bell polynomials 3.2.1 The real zero property 3.2.2 The sum and product of the zeros of Bn(x) 3.2.3 The irreducibility of Bn(x) 3.2.4 The density of the zeros of Bn(x) 3.2.5 Summation relations for the zeros of Bn(x) 3.3 Generalized Bell polynomials 3.4 Idempotent numbers and involutions 3.5 A summation formula for the Bell polynomials 3.6 The Fa`a di Bruno formula Exercises Outlook 4. Unimodality, log-concavity, and log-convexity 4.1 “Global behavior” of combinatorial sequences 4.2 Unimodality and log-concavity 4.3 Log-concavity of the Stirling numbers of the second kind 4.4 The log-concavity of the Lah numbers 4.5 Log-convexity 4.5.1 The log-convexity of the Bell numbers 4.5.2 The Bender-Canfield theorem Exercises Outlook 5. The Bernoulli and Cauchy numbers 5.1 Power sums 5.1.1 Power sums of arithmetic progressions 5.2 The Bernoulli numbers 5.2.1 The Bernoulli polynomials 5.3 The Cauchy numbers and Riordan arrays 5.3.1 The Cauchy numbers of the first and second kind 5.3.2 Riordan arrays 5.3.3 Some identities for the Cauchy numbers Exercises Outlook 6. Ordered partitions 6.1 Ordered partitions and the Fubini numbers 6.1.1 The definition of the Fubini numbers 6.1.2 Two more interpretations of the Fubini numbers 6.1.3 The Fubini numbers count chains of subsets 6.1.4 The generating function of the Fubini numbers 6.1.5 The Hankel determinants of the Fubini numbers 6.2 Fubini polynomials 6.3 Permutations, ascents, and the Eulerian numbers 6.3.1 Ascents, descents, and runs 6.3.2 The definition of the Eulerian numbers 6.3.3 The basic recursion for the Eulerian numbers 6.3.4 Worpitzky’s identity 6.3.5 A relation between Eulerian numbers and Stirling numbers 6.4 The combination lock game 6.5 Relations between the Eulerian and Fubini polynomials 6.6 An application of the Eulerian polynomials 6.7 Differential equation of the Eulerian polynomials 6.7.1 An application of the Fubini polynomials Exercises Outlook 7. Asymptotics and inequalities 7.1 The Bonferroni-inequality 7.2 The asymptotics of the second kind Stirling numbers 7.2.1 First approach 7.2.2 Second approach 7.3 The asymptotics of the maximizing index of the Stirling numbers of the second kind 7.3.1 The Euler Gamma function and the Digamma function 7.3.2 The asymptotics of Kn 7.4 The asymptotics of the first kind Stirling numbers and Bell numbers 7.5 The asymptotics of the Fubini numbers 7.6 Inequalities 7.6.1 Polynomials with roots inside the unit disk 7.6.2 Polynomials and interlacing zeros 7.6.3 Estimations on the ratio of two consecutive sequence elements 7.6.4 Dixon’s theorem 7.6.5 Colucci’s theorem and the Samuelson–Laguerre theorem and estimations for the leftmost zeros of polynomials 7.6.6 An estimation between two consecutive Fubini numbers via Lax’s theorem Exercises Outlook Part II: Generalizations of our counting sequences 8. Prohibiting elements from being together 8.1 Partitions with restrictions – second kind r-Stirling numbers 8.2 Generating functions of the r-Stirling numbers 8.3 The r-Bell numbers and polynomials 8.4 The generating function of the r-Bell polynomials 8.4.1 The hypergeometric function 8.5 The r-Fubini numbers and r-Eulerian numbers 8.6 The r-Eulerian numbers and polynomials 8.7 The combinatorial interpretation of the r-Eulerian numbers 8.8 Permutations with restrictions – r-Stirling numbers of the first kind 8.9 The hyperharmonic numbers Exercises Outlook 9. Avoidance of big substructures 9.1 The Bessel numbers 9.2 The generating functions of the Bessel numbers 9.3 The number of partitions with blocks of size at most two 9.4 Young diagrams and Young tableaux 9.5 The differential equation of the Bessel polynomials 9.6 Blocks of maximal size m 9.7 The restricted Bell numbers 9.8 The gift exchange problem 9.9 The restricted Stirling numbers of the first kind Exercises Outlook 10. Avoidance of small substructures 10.1 Associated Stirling numbers of the second kind 10.1.1 The associated Bell numbers and polynomials 10.2 The associated Stirling numbers of the first kind 10.2.1 The associated factorials An,=m 10.2.2 The derangement numbers 10.3 Universal Stirling numbers of the second kind 10.4 Universal Stirling numbers of the first kind Exercises Outlook Part III: Number theoretical properties 11. Congruences 11.1 The notion of congruence 11.2 The parity of the binomial coefficients 11.2.1 The Stolarsky-Harborth constant 11.3 Lucas congruence for the binomial coefficients 11.4 The parity of the Stirling numbers 11.5 Stirling numbers with prime parameters 11.5.1 Wilson’s theorem 11.5.2 Wolstenholme’s theorem 11.5.3 Wolstenholme’s theorem for the harmonic numbers 11.5.4 Wolstenholme’s primes 11.5.5 Wolstenholme’s theorem for Hp-1,2 11.6 Lucas congruence for the Stirling numbers of both kinds 11.6.1 The first kind Stirling number case 11.6.2 The second kind Stirling number case 11.7 Divisibility properties of the Bell numbers 11.7.1 Theorems about Bp and Bp+1 11.7.2 Touchard’s congruence 11.8 Divisibility properties of the Fubini numbers 11.8.1 Elementary congruences 11.8.2 A Touchard-like congruence 11.8.3 The Gross-Kaufman-Poonen congruences 11.9 Kurepa’s conjecture 11.10 The non-integral property of the harmonic and hyperharmonic numbers 11.10.1 Hn is not integer when n > 1 11.10.2 The 2-adic norm of the hyperharmonic numbers 11.10.3 H1 + H2 + · · · + Hn is not integer when n > 1 Exercises Outlook 12. Congruences via finite field methods 12.1 An application of the Hankel matrices 12.2 The characteristic polynomials 12.2.1 Representation of mod p sequences via the zeros of their characteristic polynomials 12.2.2 The Bell numbers modulo 2 and 3 12.2.3 General periodicity modulo p 12.2.4 Shortest period of the Fubini numbers 12.3 The minimal polynomial 12.3.1 The Berlekamp – Massey algorithm 12.4 Periodicity with respect to composite moduli 12.4.1 Chinese remainder theorem 12.4.2 The Bell numbers modulo 10 12.5 Value distributions modulo p 12.5.1 The Bell numbers modulo p Exercises Outlook 13. Diophantic results 13.1 Value distribution in the Pascal triangle 13.1.1 Lind’s construction 13.1.2 The number of occurrences of a positive integer 13.1.3 Singmaster’s conjecture 13.2 Equal values in the Pascal triangle 13.2.1 The history of the equation (n k)=(m l) 13.2.2 The particular case (n 3)=(m 4) 13.3 Value distribution in the Stirling triangles 13.3.1 Stirling triangle of the second kind 13.3.2 Stirling triangle of the first kind 13.4 Equal values in the Stirling triangles and some related diophantine equations 13.4.1 The Ramanujan-Nagell equation 13.4.2 The diophantine equation {n n-3} = {m m-1} 13.4.3 A diophantic equation involving factorials and triangular numbers 13.4.4 The Klazar – Luca theorem Exercises Outlook Appendix Basic combinatorial notions The polynomial theorem The Lambert W function function Formulas Tables Bibliography Index