دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Frederick Hoffman
سری: Springer Proceedings in Mathematics & Statistics, 388
ISBN (شابک) : 3031053745, 9783031053740
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 326
[327]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب Combinatorics, Graph Theory and Computing: SEICCGTC 2020, Boca Raton, USA, March 9–13 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترکیبات، نظریه گراف و محاسبات: SEICCGTC 2020، بوکا راتون، ایالات متحده، 9 تا 13 مارس نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد مقالات مقالات منتخب و اصلاح شده ارائه شده در
پنجاه و یکمین کنفرانس بین المللی جنوب شرقی در مورد ترکیبات،
نظریه گراف و محاسبات (SEICCGTC 2020)، که در دانشگاه آتلانتیک
فلوریدا در بوکا راتون، ایالات متحده، در تاریخ 9 تا 13 مارس 2020
برگزار شد، گردآوری شده است. SEICCGTC به طور گسترده به عنوان یک
روند ساز برای کنفرانس های دیگر در سراسر جهان در نظر گرفته می
شود - بسیاری از ایده ها و موضوعاتی که برای اولین بار در آن مورد
بحث قرار گرفت، متعاقباً در کنفرانس ها و سمپوزیوم های دیگر مورد
بررسی قرار گرفت.
این کنفرانس از سال 1970 هر ساله در باتون روژ برگزار می شود.
لوئیزیانا و بوکا راتون، فلوریدا. در طول سالها، این کنفرانس به
بزرگترین کنفرانس سالانه در زمینههای خود تبدیل شده است و نقش
مهمی در انتشار نتایج و تقویت کار مشترک ایفا میکند.
این جلد برای جامعه ریاضیدانان محض و کاربردی، در دانشگاه، در نظر
گرفته شده است. صنعت و دولت، کار در ترکیبات و تئوری گراف، و
همچنین حوزه های مرتبط علوم کامپیوتر و تعاملات بین این زمینه
ها.
This proceedings volume gathers selected, revised papers
presented at the 51st Southeastern International Conference on
Combinatorics, Graph Theory and Computing (SEICCGTC 2020), held
at Florida Atlantic University in Boca Raton, USA, on March
9-13, 2020. The SEICCGTC is broadly considered to be a
trendsetter for other conferences around the world – many of
the ideas and themes first discussed at it have subsequently
been explored at other conferences and symposia.
The conference has been held annually since 1970, in Baton
Rouge, Louisiana and Boca Raton, Florida. Over the years, it
has grown to become the major annual conference in its fields,
and plays a major role in disseminating results and in
fostering collaborative work.
This volume is intended for the community of pure and applied
mathematicians, in academia, industry and government, working
in combinatorics and graph theory, as well as related areas of
computer science and the interactions among these
fields.
Preface I Preface II Contents Ratio Balancing Numbers 1 Introduction 2 Ratio Balancing Numbers and Related Quantities 3 Counting Ratio Balancing Numbers 4 Functions Generating Ratio Balancing Numbers and Related Results 4.1 One Jump Case 4.2 Two Jump Case References An Unexpected Digit Permutation from Multiplying in Any Number Base 1 Introduction 2 Main Theorem 3 Other Interesting Results 4 Demonstration of Results 5 Questions for Further Investigation References A & Z Sequences for Double Riordan Arrays 1 Introduction 2 Double Riordan: A & Z Sequences 3 New Subgroups 4 Conclusion References Constructing Clifford Algebras for Windmill and Dutch Windmill Graphs; A New Proof of the Friendship Theorem 1 Introduction 2 Preliminaries for a Clifford Graph Algebra 3 Clifford Algebras for Windmill and Dutch Windmill Graphs 3.1 Windmill Graphs 3.2 Dutch Windmill Graphs 3.3 The Friendship Graph 3.4 The Clifford Algebra for the Friendship Graph 3.5 The Clifford Algebra for the Class of Windmill Graphs 3.6 The Clifford Algebra for the Class of Dutch Windmill Graphs 4 The Friendship Theorem 4.1 Standard Preliminaries for the Friendship Theorem 4.2 Clifford Algebra Preliminaries for the Friendship Theorem 4.3 Proof of the Friendship Theorem 5 Concluding Remarks References Finding Exact Values of a Character Sum 1 Introduction 2 Proofs 3 Counting Points on left parenthesis asterisk asterisk asterisk right parenthesis(***) 4 Examples 5 Conclusion References On Minimum Index Stanton 44-Cycle Designs 1 Introduction 2 Stanton 4-Cycles 3 Small Decompositions 4 Decompositions via Graph Labellings 5 Main Result References kk-Plane Matroids and Whiteley\'s Flattening Conjectures 1 kk-Plane Matroids 2 The 22-Plane Matroid and the Connectivity of the Incidence Graph 3 Connection to 2-d Rigidity References Bounding the Trace Function of a Hypergraph with Applications 1 Introduction and Summary 2 Main Results 3 Applications to VC Dimension 4 Applications to Domination Theory References A Generalization on Neighborhood Representatives References Harmonious Labelings of Disconnected Graphs Involving Cycles and Multiple Components Consisting of Starlike Trees 1 Introduction 2 Main Results References On Rainbow Mean Colorings of Trees 1 Introduction 2 Rainbow Mean Colorings 3 The Rainbow Mean Index of Trees 4 Cubic Caterpillars 5 Subdivided Stars 6 Double Stars References Examples of Edge Critical Graphs in Peg Solitaire 1 Introduction 2 The Hairy Complete Bipartite Graph 3 Edge Critical Results 4 Graphs on Eight Vertices References Regular Tournaments with Minimum Split Domination Number and Cycle Extendability 1 The Lower Bound 2 Properties of Tournaments That Meet the Bound References Independence and Domination of Chess Pieces on Triangular Boards and on the Surface of a Tetrahedron 1 Introduction 2 Triangular Boards with Triangular Spaces 2.1 Independence on upper T Subscript nTn 2.2 Domination on upper T Subscript nTn 3 Triangular Boards with Hexagonal Spaces 3.1 Independence on upper H Subscript nHn 3.2 Domination on upper H Subscript nHn 4 Triangular Boards on the Surface of a Tetrahedron 4.1 Independence and Domination on upper T Superscript nTn 4.2 Independence and Domination on upper H Superscript nHn References Efficient and Non-efficient Domination of double struck upper ZmathbbZ-stacked Archimedean Lattices 1 Introduction 1.1 Efficient Domination 1.2 double struck upper ZmathbbZ-stacked Archimedean Lattices 1.3 Domination Ratio and Periodic Graph 1.4 Overview of Results 2 Proving Efficient Domination 2.1 Simplification of Criteria for Efficient Domination 2.2 Additional Conditions 3 Efficiently Dominated Lattices 3.1 left parenthesis 4 Superscript 4 Baseline right parenthesis times double struck upper Z(44)timesmathbbZ Lattice and double struck upper Z Superscript nmathbbZn 3.2 left parenthesis 3 Superscript 6 Baseline right parenthesis times double struck upper Z(36)timesmathbbZ Lattice 3.3 left parenthesis 6 cubed right parenthesis times double struck upper Z(63)timesmathbbZ Lattice 3.4 left parenthesis 4 comma 8 squared right parenthesis times double struck upper Z(4,82)timesmathbbZ Lattice 3.5 left parenthesis 4 comma 6 comma 12 right parenthesis times double struck upper Z(4,6,12)timesmathbbZ Lattice 3.6 left parenthesis 3 squared comma 4 comma 3 comma 4 right parenthesis times double struck upper Z(32,4,3,4)timesmathbbZ Lattice 3.7 left parenthesis 3 cubed comma 4 squared right parenthesis times double struck upper Z(33,42)timesmathbbZ Lattice 4 Non-efficiently-dominatable double struck upper ZmathbbZ-stacked Archimedean Lattices 5 Future Research References On Subdivision Graphs Which Are 22-steps Hamiltonian Graphs and Hereditary Non 22-steps Hamiltonian Graphs 1 Introduction 2 Subdivision Graphs of a Wheel Graph 3 Subdivision Graphs of upper C 4 times upper K 2C4 timesK2 on Its Perfect Matching References On the Erdős-Sós Conjecture for Graphs with Circumference at Most k plus 1k+1 1 Introduction 2 Supporting Lemmas 3 Proof of the Main Theorem References Regular Graph and Some Vertex-Deleted Subgraph 1 Introduction 2 Prepare for Proofs 2.1 Proof of Theorem 3 3 Proof of Theorem 2 4 Proof of Remark 1 and Theorem 1 5 Sharpness References Connectivity and Extendability in Digraphs 1 Introduction 2 Preliminaries 3 Connectivity 3.1 Examples and Containment 4 Extendability 4.1 Definitions—Path- and Cycle-Extendability 4.2 Definitions—Sets of Graphs Defined by Extendability 4.3 Examples and Containment 4.4 Summary 5 Set Connectivity and Extendability 5.1 Definitions—upper SS-Path- and upper SS-Cycle-Extendability 5.2 Sets Defined by Set-Continuity and Set-Extendability References On the Extraconnectivity of Arrangement Graphs 1 Introduction 2 StartSet 4 comma 5 comma 6 EndSet{4,5,6}-Extraconnectivities References kk-Paths of kk-Trees 1 Introduction 2 Diameter of kk-Trees References Rearrangements of the Simple Random Walk 1 Introduction 2 Representation Results 3 Rearrangements of the Random Walk 4 Graph-Theoretic Complexity of the Permutations References On the Energy of Transposition Graphs 1 Introduction 1.1 Definitions 1.2 Symmetry and Recursive Scalability 2 Transposition Graphs 3 Energy and Spectra of Graphs 3.1 Energy of Graphs 3.2 Spectra of script upper TmathcalT 4 Bounds on the Energy of Transposition Graphs References A Smaller Upper Bound for the left parenthesis 4 comma 8 squared right parenthesis(4,82) Lattice Site Percolation Threshold 1 Introduction 2 Bounds for the left parenthesis 4 comma 8 squared right parenthesis(4,82) Lattice Site Percolation Threshold 3 Derivation of the Upper Bound 3.1 Substitution Method 3.2 Substitution Regions 3.3 The Comparison Lattice 3.4 Set Partitions of the Boundary Vertices 3.5 The Partition Lattice and Stochastic Ordering 3.6 ``Finding Two Needles in a Haystack\'\' 3.7 Non-crossing Partitions 3.8 Symmetry Reduction 3.9 Network Flow Model 4 Future Research References