دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Assaf Steinschneider
سری:
ISBN (شابک) : 0128171286, 9780128171288
ناشر: Academic Pr
سال نشر: 2019
تعداد صفحات: 258
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Collective Behavior in Systems Biology: A Primer on Modeling Infrastructure به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رفتار جمعی در زیست شناسی سیستم ها: آغازگر در مورد زیرساخت مدل سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Collective Behavior in Systems Biology: A Primer on Modeling Infrastructure Copyright Contents Assaf Steinschneider in memoriam Introduction 1 Change/differential equations Context Assembling a statement Collective behavior Essentials Model makeup Variables Relating the variables Terms collectively Format Linear (in)dependence Linearity and nonlinearity A bird’s eye view Change by differential equations An algebraic prelude Turning differential Building blocks and operations Functions Derivatives Integrals Definite integral Coefficients and time Operators as facilitators and delimiters Choosing a differential equation model Options Single variable dependent only/ordinary differential equations Multiple variable dependent/partial differential equations First-order partial differential equations Second-order partial differential equations Unity in diversity/systems of ordinary differential equations A complex whole/no parts The complex whole/with parts Customized modeling Structured modeling Existence and uniqueness Description into general law, interpreted Solving equations Solving ordinary differential equations Taking integrals Higher order equations into latent power Laplace transform Miscellaneous Alternative and supplementary methods Series methods Empirical/numerical methods Simulations Ways with partial differential equations The ordinary differential equation route Other partial differential equations solution methods Divining systems of ordinary differential equations Customized Structured systems Breaking the ground Direct integration Prospecting for the latent More on eigenvalues and rates A perturbing real world Varying systematically the internal and external makeup A role for system parameters Visual patterns Quantitating the qualitative Processes under perturbation Stability options Quantitative underpinnings Local stability Bypassing a formal solution Being discrete/difference equations Context Building blocks Making a difference/elementary units of change Discrete equations/multiple faces Formal solutions/process and product Fibonacci Joining forces/hybrid and mixed representations Keep in mind References Further reading 2 Consensus/linear algebra Context How equations change into modules Getting organized Vectors Matrices Square matrices Diagonal matrices Operating by the rules Single element Intramatrix Intermatrix or vector Mergers Matrix addition/subtraction Matrix multiplication Order of multiplication Matrix division via inversion Intervector operations A value for a matrix or determinants Solving equation systems Consistency Linear (in)dependence Eliminating the variables the ordered way No solution Infinite number Unique Solution values Employing determinants Exploring the latent Keep in mind Reference Further reading 3 Alternative infrastructure/series, numerical methods Context Value formally/series solutions The polynomial way Fine tuning with derivatives Recruiting sines, cosines, and their integrals Innate periodicity Quest for the best Values the practical way: numerical methods Get in line Calculating derivatives Computing integrals Values for differential equations Tangents into curves/Euler methods Algebraic fine tuning/Runge–Kutta Simulation Interfacing with machine computation Keep in mind Further reading 4 Systems/input into output Context Groundwork/descriptive/from input to output What is at stake The cast The play/a process on its way More time related Systems with a past Delay A quantitative view State variable model/the cast in full System Input Output At work State updating Output Input/output model/success with less Quantitative Between models Graphical aids Block diagrams Signal-flow graphs Keep in mind Further reading 5 Managing processes/control Context Control structure and function Targets and immediate objectives Schematics Open loop Closed loop Quantitative views Models The state variable model Input–output model Prospects for control Feasibility Transparency Evaluating control options Open or closed loop Sensitivity Feedback Contributing processes Feedback implemented Optimizing controlled systems Cellular self-regulation Metabolic control analysis Perturbing the pathway and the membership Control sharing Keep in mind References Further reading 6 Best choices/optimization Context A formula for the optimum The classical way Constraints on reality Variational choices Calculus of variations A Hamiltonian format with a maximum principle Coda Mathematical programming Linear programming Dynamic programming Keep in mind References Further reading 7 Chance encounters/random processes Context Low copy number processes A single cell setting Probability Basic notions Chances of individual members in a population Population profile Journey stochastic Gillespie’s simulation model Interacting neighbors A polypeptides environment Selecting next neighbors Energies into probabilities Keep in mind References Further reading 8 Organized behavior/networks Context Network schematics Graphs The building blocks/elements Network members with class Refining based on functional relationships Graphs modified Adding value Walks Connected by a walk Network facing interference Trees A botanical hierarchy Rooted trees Spanning trees Structure by numbers Graph statistics Matrix representation Similarity between graphs Networks in action Streaming freely/flow networks From source to sink Optimal flow A maximizing algorithm Beyond graph theory Progress by firing squad/petri nets Building blocks In action (local and global) Timings Feasibility Colors, chimeras, hybrids Afterthoughts With a little bit of logic/Boolean networks Status and change Logic, qualitative and quantitative Scheduling updates An updating process on its way Robustness in a large network Pairing logic with kinetics/motifs Small regulatory devices Integrated motif models Exercising control Statistical coda The cellular ecosystem Guilt by association Keep in mind References Further reading Index Back Cover