ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Collected Papers in Honor of Yoshihiro Shibata

دانلود کتاب مقالات جمع آوری شده به افتخار یوشیهیرو شیباتا

Collected Papers in Honor of Yoshihiro Shibata

مشخصات کتاب

Collected Papers in Honor of Yoshihiro Shibata

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 3031192516, 9783031192517 
ناشر: Birkhäuser 
سال نشر: 2022 
تعداد صفحات: 395
[396] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Collected Papers in Honor of Yoshihiro Shibata به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقالات جمع آوری شده به افتخار یوشیهیرو شیباتا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مقالات جمع آوری شده به افتخار یوشیهیرو شیباتا



یوشیهیرو شیباتا در طول دوران کاری درخشان خود، از جمله کار برجسته در معادلات ناویر-استوکس، کمک های قابل توجهی در زمینه مکانیک سیالات ریاضی داشته است. مقالاتی که در اینجا - به مناسبت هفتادمین سالگرد تولد او - جمع آوری شده است توسط محققان مشهور جهانی نوشته شده است و دهه ها دستاوردهای برجسته او را جشن می گیرند.


توضیحاتی درمورد کتاب به خارجی

Yoshihiro Shibata has made many significant contributions to the area of mathematical fluid mechanics over the course of his illustrious career, including landmark work on the Navier-Stokes equations. The papers collected here ― on the occasion of his 70th birthday ― are written by world-renowned researchers and celebrate his decades of outstanding achievements.



فهرست مطالب

Contents
Preface
	References
Global Wellposedness of the Primitive Equations with Nonlinear Equation of State  in Critical Spaces
	Abstract
	1. Introduction
	2. Preliminaries
	3. Typical Ocean Densities
		3.1. Linear Density
		3.2. Equation of State by TEOS-10
		3.3. Equation of State by McDongall–Jacket–Wright–Feistel
		3.4. Equation of State by UNESCO-80
	4. Main Result
	5. Estimates for the Local Existence
	6. A Priori Estimates
	7. Proof of Theorem 4.1
		7.1. Local Wellposedness
		7.2. Global Wellposedness
	Appendix A. Semilinear Evolution Equations and Maximal Lr-Regularity
	References
On the Global Existence for the Compressible Euler–Riesz System
	Abstract
	Introduction
	1. Main Results
	2. A Local in Time Result for Non-decaying Data
		2.1. A Priori Estimates
		2.2. About the Proof of Existence
		2.3. Uniqueness
	3. A Global Existence Result
		3.1. A Priori Estimates
		3.2. Existence
		3.3. The Proof of Uniqueness
		3.4. Instability of Nontrivial Static Solutions in the Attractive Case
	4. About Ideal Gases
		4.1. Local Existence
		4.2. Global Existence
		4.3. Remark on Static Solutions
	Appendix
	Acknowledgements
	References
Rotation Problem for a Two-Phase Drop
	Abstract
	1. Introduction
	2. Linear Problem
	3. The Nonlinear Problem
	References
On the Stokes-Type Resolvent Problem Associated with Time-Periodic Flow Around a Rotating Obstacle
	Abstract
	1. Introduction
	2. Notation
	3. Main Results
	4. The Resolvent Problem in the Whole Space
	5. The Resolvent Problem in an Exterior Domain
	6. The Time-Periodic Problem
	References
Euler System with a Polytropic Equation of State as a Vanishing Viscosity Limit
	Abstract
	1. Introduction
	2. Preliminary Material
		2.1. Mathematical Theory of the Closed System
		2.2. Transport Coefficients
		2.3. Equation of State
		2.4. Relative Energy
	3. Main Results
		3.1. Unconditional Convergence in the Absence of Boundary Layer
		3.2. Conditional Result: Viscous Boundary Layer
	4. Consistency of the Vanishing Dissipation/Radiation Approximation
		4.1. Temperature for the Euler System
		4.2. Consistency
			4.2.1. Viscous Stress Consistency
			4.2.2. Heat Flux Consistency
			4.2.3. Radiation Entropy Convective Flux Consistency
	5. Convergence
		5.1. Velocity Regularization
		5.2. Application of the Relative Energy Inequality
		5.3. Integrals Controlled by the Consistency Estimates
		5.4. Integrals Independent of the Boundary Layer
		5.5. Boundary Layer
			5.5.1. Viscous Stress
			5.5.2. Convective Term
		5.6. Strong Convergence
	References
On the Hydrostatic Approximation of Compressible Anisotropic Navier–Stokes Equations–Rigorous Justification
	Abstract
	1. Introduction
	2. Preliminaries
	3. Main Result
		3.1. Dissipative Weak Solutions of CNS
		3.2. Strong Solution of CPE
		3.3. Versatile Relative Entropy Inequality
		3.4. Main Result
	4. Convergence
		4.1. Main Idea of Proof
		4.2. Step 1
		4.3. Step 2
		4.4. Step 3
	Acknowledgements
	References
A Route to Chaos in Rayleigh–Bénard Heat Convection
	Abstract
	1. Introduction
	2. linear Stability and Critical Rayleigh Number
	3. Routes to Chaos
		3.1. Roll Solutions on Bifurcation Branches in the Large
		3.2. Time Evolution of Roll Solutions and the Secondary Hopf Bifurcation
		3.3. Concluding Remark
	Acknowledgements
	References
Existence of Weak Solution to the Nonstationary Navier-Stokes Equations Approximated by Pressure Stabilization Method
	Abstract
	1. Introduction
	2. Notations and Main Results
	3. Preliminaries
	4. Proof of Main Results
	Acknowledgements
	References
Resolvent Estimates for a Compressible Fluid Model of Korteweg Type and Their Application
	Abstract
	1. Introduction
	2. Notation and Main Results
		2.1. Notation
		2.2. Main Results
	3. Preliminaries
		3.1. Some Inequalities
		3.2. Compact Embeddings
		3.3. Results of the Large Resolvent Parameter
		3.4. Maximal Regularity
	4. The Problem in Bounded Domains
		4.1. Existence of Solutions
		4.2. Uniqueness of Solutions
		4.3. A Priori Estimates
		4.4. Proof of Theorem 2.5
		4.5. Proof of Theorem 2.6
	5. The Whole Space Problem
		5.1. Representation Formulas of Solutions
		5.2. Estimates of P(ξ,λ) for γ=0.
		5.3. Estimates of P(ξ,λ) for γ>0.
		5.4. Proof of Theorem 5.1
	6. The Problem in Exterior Domains
		6.1. Construction of Parametrix
		6.2. Uniqueness of Solutions
		6.3. A Priori Estimates
		6.4. An Auxiliary Problem
		6.5. Proof of Theorem 2.1
	7. Application to a Nonlinear Problem
		7.1. Generation of an Analytic C0-Semigroup
		7.2. Maximal Regularity with Exponential Stability
		7.3. Estimates of Nonlinear Terms
		7.4. Global Solvability of the Nonlinear Problem
	References
Rate of the Enhanced Dissipation for the Two-jet Kolmogorov Type Flow on the Unit Sphere
	Abstract
	1. Introduction
	2. Preliminaries
	3. Analysis of the Linearized Operator
		3.1. Settings and Basic Results
		3.2. Verification of Assumption 4.6
		3.3. Estimates for the Semigroup
	4. Abstract Results
	5. Appendix: Basic Formulas of Differential Geometry
	Acknowledgements
	References
Reacting Multi-component Fluids: Regular Solutions in Lorentz Spaces
	Abstract
	1. Introduction
	2. Functional Spaces and the Main Result
	3. Auxiliary Results and Linear Theory
	4. A Priori Estimates
		4.1. Velocity Bounds
		4.2. Estimates for the Density
	5. Existence
	Acknowledgements
	References
Global Well Posedness for a Q-tensor Model of Nematic Liquid Crystals
	Abstract
	1. Introduction
	2. Maximal Lp–Lq Regularity
		2.1. mathcalR-boundedness of Solution Operators
		2.2. A Proof of Theorem 2.1
	3. Decay Property of Solutions to the Linearized Problem
		3.1. Decay Estimates for d
		3.2. Decay Estimates for U and mathbbQ
			3.2.1. Analysis of Low Frequency Parts
			3.2.2. Analysis of High Frequency Parts
	4. A Proof of Theorem 1.1
		4.1. Analysis of Time Shifted Equations
		4.2. Analysis of Compensation Equations
			4.2.1. Estimates of Spatial Derivatives in Lp–Lq
			4.2.2. Estimates of Time Derivatives in Lp–Lq
			4.2.3. Estimates of the Lower Order Term in Linfty–Lq
		4.3. Conclusion
	References
Maximal Regularity for Compressible Two-Fluid System
	Abstract
	1. Introduction
		1.1. Notation
		1.2. Main Results
		1.3. Discussion
	2. Lagrangian Coordinates
	3. Local Well-Posedness
		3.1. Linearization Around the Initial Condition
		3.2. Maximal Regularity
		3.3. Preliminary Estimates
		3.4. Estimate of the Right Hand Side of (3.3)
		3.5. Contraction Argument—Proof of Theorem 1.1
	4. Global Well-Posedness
		4.1. Linearization Around the Constant State
		4.2. Exponential Decay
		4.3. Bounds for Nonlinearities
		4.4. Proof of Theorem 1.2
	Appendix
	Acknowledgements
	References
Steady Compressible Navier–Stokes–Fourier Equations with Dirichlet Boundary Condition for the Temperature
	Abstract
	1. Introduction
	2. Formulation of the Problem: Main Result
	3. Weak Compactness of Weak and Variational Entropy Ballistic Solutions
		3.1. A Priori Estimates
		3.2. Weak Compactness
	4. Construction of the Solution
	References
A Slightly Supercritical Condition of Regularity of Axisymmetric Solutions to the Navier–Stokes Equations
	Abstract
	1. Introduction
	2. Auxiliary Facts
	3. Proof of Proposition 1.4
	4. Proof of Theorem 1.3
	Acknowledgements
	References
Spatial Pointwise Behavior of Time-Periodic Navier–Stokes Flow Induced by Oscillation of a Moving Obstacle
	Abstract
	1. Introduction
	2. Results
		2.1. Notation
		2.2. Evolution Operator
		2.3. Main Results
	3. Proof of Theorem 2.1
		3.1. Weak Form of the Integral Equation
		3.2. Regularity in x
		3.3. Regularity in t and the Pressure
	4. Proof of Theorem 2.2
		4.1. Reduction to the Whole Space Problem
		4.2. Integral Equation for the Whole Space Problem
		4.3. Reconstruction Procedure
	References




نظرات کاربران