دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سازمان و پردازش داده ها ویرایش: نویسندگان: Gil Raviv سری: ISBN (شابک) : 9781509307951 ناشر: Microsoft Press سال نشر: 2018 تعداد صفحات: 433 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Collect, Combine, and Transform Data Using Power Query in Excel and Power BI به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب جمع آوری ، ترکیب و تبدیل داده ها با استفاده از Power Query در Excel و Power BI نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با استفاده از Power Query، میتوانید هر دادهای را از یک رابط ساده وارد، تغییر شکل و پاکسازی کنید، بنابراین میتوانید آن دادهها را برای تمام بینشهای پنهان آن استخراج کنید. Power Query در Excel، Power BI و سایر محصولات مایکروسافت تعبیه شده است و Gil Raviv متخصص برجسته Power Query به شما کمک می کند تا بهترین استفاده را از آن ببرید. نحوه حذف زمانبر آمادهسازی دستی دادهها، حل مشکلات رایج، اجتناب از دامها و موارد دیگر را کشف کنید. سپس، چندین چالش تحلیلی کامل را طی کنید و تمام مهارتهای خود را در یک پروژه پایانی واقع گرایانه به طول فصل ادغام کنید. تا زمانی که کارتان تمام شد، آماده خواهید بود که هر داده ای را به چالش بکشید – و آن را به دانش قابل اجرا تبدیل کنید.
آماده و تجزیه و تحلیل کنید. دادهها به روش ساده، با Power Query
· به سرعت دادهها را برای تجزیه و تحلیل با Power Query در اکسل آماده کنید (همچنین به عنوان Get شناخته میشود)
Using Power Query, you can import, reshape, and cleanse any data from a simple interface, so you can mine that data for all of its hidden insights. Power Query is embedded in Excel, Power BI, and other Microsoft products, and leading Power Query expert Gil Raviv will help you make the most of it. Discover how to eliminate time-consuming manual data preparation, solve common problems, avoid pitfalls, and more. Then, walk through several complete analytics challenges, and integrate all your skills in a realistic chapter-length final project. By the time you’re finished, you’ll be ready to wrangle any data–and transform it into actionable knowledge.
Prepare and analyze your data the easy way, with Power Query
· Quickly prepare data for analysis with Power Query in Excel (also known as Get & Transform) and in Power BI
· Solve common data preparation problems with a few mouse clicks and simple formula edits
· Combine data from multiple sources, multiple queries, and mismatched tables
· Master basic and advanced techniques for unpivoting tables
· Customize transformations and build flexible data mashups with the M formula language
· Address collaboration challenges with Power Query
· Gain crucial insights into text feeds
· Streamline complex social network analytics so you can do it yourself
For all information workers, analysts, and any Excel user who wants to solve their own business intelligence problems.
Cover Title Page Copyright Page Contents Introduction Chapter 1 Introduction to Power Query What Is Power Query? A Brief History of Power Query Where Can I Find Power Query? Main Components of Power Query Get Data and Connectors The Main Panes of the Power Query Editor Exercise 1-1: A First Look at Power Query Summary Chapter 2 Basic Data Preparation Challenges Extracting Meaning from Encoded Columns AdventureWorks Challenge Exercise 2-1: The Old Way: Using Excel Formulas Exercise 2-2, Part 1: The New Way Exercise 2-2, Part 2: Merging Lookup Tables Exercise 2-2, Part 3: Fact and Lookup Tables Using Column from Examples Exercise 2-3, Part 1: Introducing Column from Examples Practical Use of Column from Examples Exercise 2-3, Part 2: Converting Size to Buckets/Ranges Extracting Information from Text Columns Exercise 2-4: Extracting Hyperlinks from Messages Handling Dates Exercise 2-5: Handling Multiple Date Formats Exercise 2-6: Handling Dates with Two Locales Extracting Date and Time Elements Preparing the Model Exercise 2-7: Splitting Data into Lookup Tables and Fact Tables Exercise 2-8: Splitting Delimiter-Separated Values into Rows Summary Chapter 3 Combining Data from Multiple Sources Appending a Few Tables Appending Two Tables Exercise 3-1: Bikes and Accessories Example Exercise 3-2, Part 1: Using Append Queries as New Exercise 3-2, Part 2: Query Dependencies and References Appending Three or More Tables Exercise 3-2, Part 3: Bikes + Accessories + Components Exercise 3-2, Part 4: Bikes + Accessories + Components + Clothing Appending Tables on a Larger Scale Appending Tables from a Folder Exercise 3-3: Appending AdventureWorks Products from a Folder Thoughts on Import from Folder Appending Worksheets from a Workbook Exercise 3-4: Appending Worksheets: The Solution Summary Chapter 4 Combining Mismatched Tables The Problem of Mismatched Tables What Are Mismatched Tables? The Symptoms and Risks of Mismatched Tables Exercise 4-1: Resolving Mismatched Column Names: The Reactive Approach Combining Mismatched Tables from a Folder Exercise 4-2, Part 1: Demonstrating the Missing Values Symptom Exercise 4-2, Part 2: The Same-Order Assumption and the Header Generalization Solution Exercise 4-3: Simple Normalization Using Table.TransformColumnNames The Conversion Table Exercise 4-4: The Transpose Techniques Using a Conversion Table Exercise 4-5: Unpivot, Merge, and Pivot Back Exercise 4-6: Transposing Column Names Only Exercise 4-7: Using M to Normalize Column Names Summary Chapter 5 Preserving Context Preserving Context in File Names and Worksheets Exercise 5-1, Part 1: Custom Column Technique Exercise 5-1, Part 2: Handling Context from File Names and Worksheet Names Pre-Append Preservation of Titles Exercise 5-2: Preserving Titles Using Drill Down Exercise 5-3: Preserving Titles from a Folder Post-Append Context Preservation of Titles Exercise 5-4: Preserving Titles from Worksheets in the same Workbook Using Context Cues Exercise 5-5: Using an Index Column as a Cue Exercise 5-6: Identifying Context by Cell Proximity Summary Chapter 6 Unpivoting Tables Identifying Badly Designed Tables Introduction to Unpivot Exercise 6-1: Using Unpivot Columns and Unpivot Other Columns Exercise 6-2: Unpivoting Only Selected Columns Handling Totals Exercise 6-3: Unpivoting Grand Totals Unpivoting 2×2 Levels of Hierarchy Exercise 6-4: Unpivoting 2×2 Levels of Hierarchy with Dates Exercise 6-5: Unpivoting 2×2 Levels of Hierarchy Handling Subtotals in Unpivoted Data Exercise 6-6: Handling Subtotals Summary Chapter 7 Advanced Unpivoting and Pivoting of Tables Unpivoting Tables with Multiple Levels of Hierarchy The Virtual PivotTable, Row Fields, and Column Fields Exercise 7-1: Unpivoting the AdventureWorks N×M Levels of Hierarchy Generalizing the Unpivot Sequence Exercise 7-2: Starting at the End Exercise 7-3: Creating FnUnpivotSummarizedTable The Pivot Column Transformation Exercise 7-4: Reversing an Incorrectly Unpivoted Table Exercise 7-5: Pivoting Tables of Multiline Records Summary Chapter 8 Addressing Collaboration Challenges Local Files, Parameters, and Templates Accessing Local Files—Incorrectly Exercise 8-1: Using a Parameter for a Path Name Exercise 8-2: Creating a Template in Power BI Exercise 8-3: Using Parameters in Excel Working with Shared Files and Folders Importing Data from Files on OneDrive for Business or SharePoint Exercise 8-4: Migrating Your Queries to Connect to OneDrive for Business or SharePoint Exercise 8-5: From Local to SharePoint Folders Security Considerations Removing All Queries Using the Document Inspector in Excel Summary Chapter 9 Introduction to the Power Query M Formula Language Learning M Learning Maturity Stages Online Resources Offline Resources Exercise 9-1: Using #shared to Explore Built-in Functions M Building Blocks Exercise 9-2: Hello World The let Expression Merging Expressions from Multiple Queries and Scope Considerations Types, Operators, and Built-in Functions in M Basic M Types The Number Type The Time Type The Date Type The Duration Type The Text Type The Null Type The Logical Type Complex Types The List Type The Record Type The Table Type Conditions and If Expressions if-then-else An if Expression Inside a let Expression Custom Functions Invoking Functions The each Expression Advanced Topics Error Handling Lazy and Eager Evaluations Loops Recursion List.Generate List.Accumulate Summary Chapter 10 From Pitfalls to Robust Queries The Causes and Effects of the Pitfalls Awareness Best Practices M Modifications Pitfall 1: Ignoring the Formula Bar Exercise 10-1: Using the Formula Bar to Detect Static References to Column Names Pitfall 2: Changed Types Pitfall 3: Dangerous Filtering Exercise 10-2, Part 1: Filtering Out Black Products The Logic Behind the Filtering Condition Exercise 10-2, Part 2: Searching Values in the Filter Pane Pitfall 4: Reordering Columns Exercise 10-3, Part 1: Reordering a Subset of Columns Exercise 10-3, Part 2: The Custom Function FnReorderSubsetOfColumns Pitfall 5: Removing and Selecting Columns Exercise 10-4: Handling the Random Columns in the Wide World Importers Table Pitfall 6: Renaming Columns Exercise 10-5: Renaming the Random Columns in the Wide World Importers Table Pitfall 7: Splitting a Column into Columns Exercise 10-6: Making an Incorrect Split Pitfall 8: Merging Columns More Pitfalls and Techniques for Robust Queries Summary Chapter 11 Basic Text Analytics Searching for Keywords in Textual Columns Exercise 11-1: Basic Detection of Keywords Using a Cartesian Product to Detect Keywords Exercise 11-2: Implementing a Cartesian Product Exercise 11-3: Detecting Keywords by Using a Custom Function Which Method to Use: Static Search, Cartesian Product, or Custom Function? Word Splits Exercise 11-4: Naïve Splitting of Words Exercise 11-5: Filtering Out Stop Words Exercise 11-6: Searching for Keywords by Using Split Words Exercise 11-7: Creating Word Clouds in Power BI Summary Chapter 12 Advanced Text Analytics: Extracting Meaning Microsoft Azure Cognitive Services API Keys and Resources Deployment on Azure Pros and Cons of Cognitive Services via Power Query Text Translation The Translator Text API Reference Exercise 12-1: Simple Translation Exercise 12-2: Translating Multiple Messages Sentiment Analysis What Is the Sentiment Analysis API Call? Exercise 12-3: Implementing the FnGetSentiment Sentiment Analysis Custom Function Exercise 12-4: Running Sentiment Analysis on Large Datasets Extracting Key Phrases Exercise 12-5: Converting Sentiment Logic to Key Phrases Multi-Language Support Replacing the Language Code Dynamic Detection of Languages Exercise 12-6: Converting Sentiment Logic to Language Detection Summary Chapter 13 Social Network Analytics Getting Started with the Facebook Connector Exercise 13-1: Finding the Pages You Liked Analyzing Your Friends Exercise 13-2: Finding Your Power BI Friends and Their Friends Exercise 13-3: Find the Pages Your Friends Liked Analyzing Facebook Pages Exercise 13-4: Extracting Posts and Comments from Facebook Pages—The Basic Way Short Detour: Filtering Results by Time Exercise 13-5: Analyzing User Engagement by Counting Comments and Shares Exercise 13-6: Comparing Multiple Pages Summary Chapter 14 Final Project: Combining It All Together Exercise 14-1: Saving the Day at Wide World Importers Clues Part 1: Starting the Solution Part 2: Invoking the Unpivot Function Part 3: The Pivot Sequence on 2018 Revenues Part 4: Combining the 2018 and 2015–2017 Revenues Exercise 14-2: Comparing Tables and Tracking the Hacker Clues Exercise 14-2: The Solution Detecting the Hacker’s Footprints in the Compromised Table Summary Index A B C D E F G H I J K L M N O P Q R S T U V W X-Y-Z