دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک کوانتوم ویرایش: نویسندگان: John Weiner سری: ISBN (شابک) : 0521781213, 9780511066870 ناشر: Cambridge University Press سال نشر: 2003 تعداد صفحات: 231 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Cold and ultracold collisions in quantum microscopic and mesoscopic systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب برخوردهای سرد و فوق سرد در سیستم های میکروسکوپی و مزوسکوپی کوانتومی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب برخورد بین اتمهایی را که با تکنیکهای خنککننده نوری و تبخیری تا دمای بسیار پایین سرد شدهاند، توصیف میکند. جان وینر عناصر تئوری کوانتومی پراکندگی را مرور میکند و نظریه و تکنیکهای تجربی خنکسازی و به دام انداختن نوری را خلاصه میکند. او همچنین کاربردهایی در طیفسنجی دقیق، تعیین خواص اتمی، کنترل برخوردهای غیرالاستیک توسط میدانهای لیزری، و دستکاری چگالشهای بوز-اینشتین (سیستمهای کوانتومی مزوسکوپی) را توصیف میکند.
This book describes collisions between atoms that have been cooled to extremely low temperatures by optical and evaporative cooling techniques. John Weiner reviews the elements of the quantum theory of scattering, and summarizes the theory and experimental techniques of optical cooling and trapping. He also describes applications to precision spectroscopy, the determination of atomic properties, control of inelastic collisions by laser fields, and the manipulation of Bose-Einstein condensates (mesoscopic quantum systems).
Cover......Page 1
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
Preface......Page 11
1 General introduction......Page 13
2.1 Basic concepts of scattering theory......Page 19
2.2 Quantum properties as energy approaches zero......Page 25
2.2.1 Relations between phase shift, scattering length, and bound states......Page 29
2.2.2 Scattering length in a square-well potential......Page 32
2.3 Collisions in a light field......Page 35
3.1.1 Light forces......Page 39
Basic notions......Page 43
3.1.3 Dark SPOT MOT......Page 46
3.1.4 The far-off resonance trap (FORT)......Page 47
Magnetic traps......Page 48
3.2.2 Velocity group selection......Page 49
3.2.3 Bright slow beams......Page 51
4 Inelastic exoergic collisions in MOTs......Page 53
Gallagher–Pritchard model......Page 54
Julienne–Vigué model......Page 57
Quasistatic theories......Page 59
4.1.3 Method of complex potentials......Page 60
4.1.4 Two-photon distorted wave theory......Page 62
Optical Bloch equations......Page 64
Quantum Monte Carlo methods......Page 65
Small vs large detuning......Page 67
4.2 Excited-state trap-loss measurements......Page 70
Sodium trap loss......Page 74
4.2.1 Cesium trap loss......Page 78
4.2.2 Rubidium trap loss......Page 79
4.2.3 Lithium trap loss......Page 87
4.2.4 Potassium trap loss......Page 91
4.2.6 Sodium–rubidium mixed-species trap loss......Page 93
Na–Cs trap loss......Page 95
K–Rb trap loss......Page 96
Li–Cs trap loss......Page 98
4.2.8 Rare-gas metastable loss in MOTs and optical lattices......Page 99
4.3 Ground-state trap-loss collisions......Page 100
Hyperfine-changing collisions......Page 101
Sodium......Page 102
Summary comparison of trap loss rate constants......Page 105
4.3.1 Low-intensity trap loss revisited......Page 106
5.1 Introduction......Page 109
5.2 Photoassociation at ambient and cold temperatures......Page 111
5.3 Associative and photoassociative ionization......Page 113
5.3.1 PAI at small detuning......Page 118
5.3.2 PAI and molecular hyperfine structure......Page 119
5.3.3 Two-color PAI......Page 120
5.4.1 Sodium......Page 124
5.4.2 Rubidium......Page 129
5.4.3 Lithium......Page 132
5.4.4 Potassium......Page 133
5.5 Photoassociative ionization in atom beams......Page 134
5.6 Atomic lifetimes from photoassociation spectroscopy......Page 137
5.7 Determination of the scattering length......Page 140
5.7.1 Lithium......Page 141
5.7.2 Sodium......Page 143
5.7.3 Rubidium......Page 146
5.7.5 Potassium-rubidium......Page 147
5.7.6 Lithium–hydrogen......Page 148
5.7.8 Helium......Page 149
6.1 Introduction......Page 150
6.2 Optical suppression of trap loss......Page 152
6.2.1 Optical shielding and suppression in photoassociative ionization......Page 154
6.2.2 Optical shielding in xenon and krypton collisional ionization......Page 158
6.2.3 Optical shielding in Rb collisions......Page 160
6.2.4 Theories of optical shielding......Page 161
7.1 Early work......Page 167
7.2 Bose–Einstein condensation......Page 169
7.3 Collisional aspects of BEC......Page 171
7.3.1 Further comments on the scattering length......Page 174
7.3.2 Designer condensates using Feshbach resonances......Page 181
7.3.4 Condensates in all-optical traps......Page 184
7.4 Cold molecule formation......Page 189
7.4.2 Cold molecules from cold atoms: photoassociation......Page 191
Molecule stabilization by spontaneous processes......Page 192
Molecule stabilization by stimulated processes......Page 195
7.4.3 Molecular BECs from Feshbach resonances......Page 198
7.5 Collisions and quantum computation......Page 201
7.6 Future directions......Page 205
References......Page 207
Index......Page 230