دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Didier Robert. Monique Combescure
سری: Theoretical and Mathematical Physics
ISBN (شابک) : 9783030708450, 3030708454
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 582
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Coherent States and Applications in Mathematical Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حالات منسجم و کاربردها در فیزیک ریاضی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface to the Second Edition Preface to the First Edition Contents Part I Basic Euclidian Coherent States and Applications 1 Introduction to Coherent States 1.1 A Very Brief Introduction to the Heisenberg Uncertainty Principle 1.2 The Weyl–Heisenberg Group and the Canonical Coherent States 1.2.1 The Weyl–Heisenberg Translation Operator 1.2.2 The Coherent States of Arbitrary Profile 1.3 The Coherent States of the Harmonic Oscillator 1.3.1 Definition and Properties 1.3.2 The Time Evolution of the Coherent State for the Harmonic Oscillator Hamiltonian 1.3.3 An Overcomplete System 1.4 From Schrödinger to Bargmann–Fock Representation 2 Weyl Quantization and Coherent States 2.1 Classical and Quantum Observables 2.1.1 Group Invariance of Weyl Quantization 2.2 Wigner Functions 2.3 Coherent States and Operator Norms Estimates 2.4 Product Rule and Applications 2.4.1 The Moyal Product 2.4.2 Functional Calculus 2.4.3 Propagation of Observables 2.4.4 Return to Symplectic Invariance of Weyl Quantization 2.5 Husimi Functions, Frequency Sets and Propagation 2.5.1 Frequency Sets 2.5.2 About Frequency Sets of Eigenstates 2.6 Wick Quantization 2.6.1 General Properties 2.6.2 Application to Semi-classical Measures 3 Quadratic Hamiltonians 3.1 The Propagator of Quadratic Quantum Hamiltonians 3.2 The Propagation of Coherent States 3.3 The Metaplectic Transformations 3.4 Representation of the Quantum Propagator in Terms of the Generator of Squeezed States 3.5 Representation of the Weyl Symbol of the Metaplectic Operators 3.6 Traps 3.6.1 The Classical Motion 3.6.2 The Quantum Evolution 4 The Semiclassical Evolution of Gaussian Coherent States 4.1 General Results and Assumptions 4.1.1 Assumptions and Notations 4.1.2 The Semiclassical Evolution of Generalized Coherent States 4.1.3 Related Works and Other Results 4.2 Application to the Spreading of Quantum Wave Packets 4.3 Evolution of Coherent States and Bargmann Transform 4.3.1 Formal Computations 4.3.2 Weighted Estimates and Fourier–Bargmann Transform 4.3.3 Large Time Estimates and Fourier–Bargmann Analysis 4.3.4 Exponentially Small Estimates 4.4 Application to the Scattering Theory 5 Trace Formulas and Coherent States 5.1 Introduction 5.2 The Semiclassical Gutzwiller Trace Formula 5.3 Preparations for the Proof 5.4 The Stationary Phase Computation 5.5 A Pointwise Trace Formula and Quasi-Modes 5.5.1 A Pointwise Trace Formula 5.5.2 Quasi-Modes and Bohr–Sommerfeld Quantization Rules Part II Coherent States in Non Euclidian Geometries 6 Quantization and Coherent States on the 2-Torus 6.1 Introduction 6.2 The Automorphisms of the 2-Torus 6.3 The Kinematics Framework and Quantization 6.4 The Coherent States of the Torus 6.5 The Weyl and Anti-Wick Quantizations on the 2-Torus 6.5.1 The Weyl Quantization on the 2-Torus 6.5.2 The Anti-Wick Quantization on the 2-Torus 6.6 Quantum Dynamics and Exact Egorov's Theorem 6.6.1 Quantization of SL(2, mathbbZ) 6.6.2 The Egorov Theorem is Exact 6.6.3 Propagation of Coherent States 6.7 Equipartition of the Eigenfunctions of Quantized Ergodic Maps on the 2-Torus 6.8 Spectral Analysis of Hamiltonian Perturbations 7 Spin Coherent States 7.1 Introduction 7.2 The Groups SO(3) and SU(2) 7.3 The Irreducible Representations of SU(2) 7.3.1 The Irreducible Representations of mathfraksu(2) 7.3.2 The Irreducible Representations of SU(2) 7.3.3 Irreducible Representations of SO(3) and Spherical Harmonics 7.4 The Coherent States of SU(2) 7.4.1 Definition and First Properties 7.4.2 Some Explicit Formulas 7.5 Coherent States on the Riemann Sphere 7.6 Application to High Spin Inequalities 7.6.1 Berezin-Lieb Inequalities 7.6.2 High Spin Estimates 7.7 More on High Spin Limit: From Spin Coherent States … 8 Pseudo-Spin Coherent States 8.1 Introduction to the Geometry of the Pseudosphere, SO(2,1) and SU(1,1) 8.1.1 Minkowski Model 8.1.2 Lie Algebra 8.1.3 The Disc and the Half-Plane Poincaré Representations of the Pseudosphere 8.2 Unitary Representations of SU(1,1) 8.2.1 Classification of the Possible Representations of SU(1,1) 8.2.2 Discrete Series Representations of SU(1,1) 8.2.3 Irreducibility of Discrete Series 8.2.4 Principal Series 8.2.5 Complementary Series 8.2.6 Realizations for Bosonic Systems 8.3 Pseudo-Spin-Coherent States for Discrete Series 8.3.1 Definition of Coherent States for Discrete Series 8.3.2 Some Explicit Formulae 8.3.3 Bargmann Transform and Large k Limit 8.4 Coherent States for the Principal Series 8.5 Generator of Squeezed States. Application 8.5.1 The Generator of Squeezed States 8.5.2 Application to Quantum Dynamics 8.6 Wavelets and Pseudo-Spin Coherent States 9 The Coherent States of the Hydrogen Atom 9.1 The mathbbS3 Sphere and the Group SO(4) 9.1.1 Introduction 9.1.2 Irreducible Representations of SO(4) 9.1.3 Hyperspherical Harmonics and Spectral Decomposition of ΔmathbbS3 9.1.4 The Coherent States for mathbbS3 9.2 The Hydrogen Atom 9.2.1 Generalities 9.2.2 The Fock Transformation: A Map from L2(mathbbS3) Towards the Pure-Point Subspace of 9.3 The Coherent States of the Hydrogen Atom Part III More Advanced Results on Harmonic Coherent States and Applications 10 Characterizations of Harmonic Pseudodifferential Operators 10.1 Operators Classes Associated with the Harmonic Oscillator 10.1.1 The Harmonic Classes 10.1.2 The Beals Commutator Classes 10.1.3 Coherent States Classes 10.1.4 The Matrix Class 10.1.5 An Application to Time Dependent Perturbations of Harmonic Oscillator 10.2 The Semi-classical Setting 11 Herman-Kluk Approximation for the Schrödinger Propagator 11.1 Sub-quadratic Hamiltonians 11.2 Semi-classical Fourier-Integral Operators 11.3 The Herman-Kluk Semi-classical Approximation 11.3.1 Proof of Theorem 57 by Deformation 11.3.2 A Proof by Solving Transport Equations 11.3.3 Error Estimates on Finite Time Intervals 11.4 Large Time Estimates 11.5 Application to the Aharonov-Bohm Effect 11.5.1 The Van-Vleck Formula 11.5.2 A Setting for the Time-Dependent Aharonov-Bohm Effect 11.6 Application to the Spectrum of Periodic Hamiltonians Flow 12 Semi-classical Measures: Stationary and Large Time Behavior 12.1 Semi-classical Measures for Bound States 12.1.1 More on the Weyl Law 12.1.2 More About Semi-classical Measures 12.2 Semi-Classical Quantum Ergodicity 12.3 The Quantum Ergodic Birkhoff Theorem 12.4 Time Dependent Semi-classical Measures 12.5 Quantum Unique Ergodicity for a Random Hermite Basis 13 Open Quantum Systems and Coherent States 13.1 Introduction to Open Quantum Systems 13.1.1 A General Setting 13.1.2 Coupled Quadratic Hamiltonians 13.1.3 A Schrödinger Cat Model 13.2 Computation of the Purity 13.2.1 Assumption and Statements 13.2.2 Proofs of the Statements of Sect.13.2.1 13.3 Separability and Entanglement 13.3.1 Statements 13.3.2 Proofs of the Separability Results 13.3.3 Proof of Theorem 72 13.4 The Master Equation in the Quadratic Case 13.4.1 General Quadratic Hamiltonians 13.4.2 Time Evolution of Reduced Mixed States 13.4.3 About the Schrödinger Cat 14 Adiabatic Decoupling and Time Evolution of Coherent States for Multi-component Systems 14.1 Semi-classical Analysis for Multi-components Systems 14.2 Systems with a Scalar Leading Term 14.3 Spin-Orbit Interaction 14.4 Systems with Constant Multiplicities Eigenvalues 14.5 Figure Part IV Coherent States with Infinitely Many Degrees of Freedom 15 Bosonic Coherent States 15.1 Introduction 15.2 Fock Spaces 15.2.1 Bosons and Fermions 15.2.2 Bosons 15.3 The Bosons Coherent States 15.4 The Classical Limit for Large Systems of Bosons 15.4.1 Introduction 15.4.2 The Hepp Method 15.4.3 Remainder Estimates in the Hepp Method 15.4.4 Time Evolution of Coherent States 16 Fermionic Coherent States 16.1 Introduction 16.2 From Fermionic Fock Spaces to Grassmann Algebras 16.3 Integration on Grassmann Algebra 16.3.1 More Properties of Grassmann Algebras 16.3.2 Calculus with Grassmann Numbers 16.3.3 Gaussian Integrals 16.4 Super-Hilbert Spaces and Operators 16.4.1 A Space for Fermionic States 16.4.2 Integral Kernels 16.4.3 A Fourier Transform 16.5 Coherent States for Fermions 16.5.1 Weyl Translations 16.5.2 Fermionic Coherent States 16.6 Representations of Operators 16.6.1 Trace 16.6.2 Representation by Translations and Weyl Quantization 16.6.3 Wigner–Weyl Functions 16.6.4 The Moyal Product for Fermions 16.7 Examples 16.7.1 The Fermi Oscillator 16.7.2 The Fermi-Dirac Statistics 16.7.3 Quadratic Hamiltonians and Coherent States 16.7.4 More on Quadratic Propagators 17 Supercoherent States—An Introduction 17.1 Introduction 17.2 Quantum Supersymmetry 17.3 Classical Superspaces 17.3.1 Morphisms and Spaces 17.3.2 Super Algebra Notions 17.3.3 Examples of Morphisms 17.4 Super-Lie Algebras and Groups 17.4.1 Super-Lie Algebras 17.4.2 Supermanifolds, A Very Brief Presentation 17.4.3 Super-Lie Groups 17.5 Classical Supersymmetry 17.5.1 A Short Overview of Classical Mechanics 17.5.2 Supersymmetric Mechanics 17.5.3 Supersymmetric Quantization 17.6 Supercoherent States 17.7 Phase Space Representations of Super Operators 17.8 Application to the Dicke Model Appendix A Tools for Integral Computations A.1 Fourier Transform of Gaussian Functions A.2 Sketch of Proof for Theorem 29摥映數爠eflinkstphthm295 A.3 A Determinant Computation A.4 The Saddle Point Method A.4.1 The One Real Variable Case A.4.2 The Complex Variables Case A.5 Kähler Geometry Appendix B Remainder Estimate for the Moyal Product Appendix C Semi-classical Functional Calculus C.1 Introduction C.2 Functional Calculus and Almost Analytic Extension C.2.1 Weyl Calculus and Resolvent Estimates C.2.2 End of the Proof of Theorem 10摥映數爠eflinkfuncal102 Appendix D Lie Groups and Coherent States D.1 Lie Groups and Coherent States D.2 On Lie Groups and Lie Algebras D.2.1 Lie Algebras D.2.2 Lie Groups D.3 Representations of Lie Groups D.3.1 General Properties of Representations D.3.2 The Compact Case D.3.3 The Non-compact Case D.4 Coherent States According Gilmore-Perelomov Appendix E Berezin Quantization and Coherent States Appendix References Index of Concepts Index of Symbols