دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Yu-Dong Zhang. Arun Kumar Sangaiah
سری: Cognitive Data Science in Sustainable Computing
ISBN (شابک) : 0128244100, 9780128244104
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 377
[378]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Cognitive Systems and Signal Processing in Image Processing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های شناختی و پردازش سیگنال در پردازش تصویر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستم های شناختی و پردازش سیگنال در پردازش تصویر چارچوب ها و کاربردهای متفاوتی از روش های پردازش سیگنال شناختی را در پردازش تصویر ارائه می دهد. این کتاب مروری بر کاربردهای اخیر در پردازش تصویر با روشهای پردازش سیگنال شناختی در زمینه Big Data و Cognitive AI ارائه میکند. این ادغام سیستم های شناختی و پردازش سیگنال را در زمینه رویکردهای پردازش تصویر در حل حوزه های مختلف کاربردی کلمه واقعی ارائه می دهد. این کتاب آخرین پیشرفت ها در کلان داده های شناختی و محاسبات پایدار را گزارش می دهد.
مطالعات موردی مختلف و کارهای اجرا شده برای درک بهتر و وضوح بیشتر برای خوانندگان مورد بحث قرار گرفته است. مدل ترکیبی هوش دادههای شناختی با روشهای یادگیری میتواند برای تجزیه و تحلیل الگوهای نوظهور، شناسایی فرصتهای تجاری و مراقبت از مسائل حیاتی فرآیند محور برای بینایی رایانه در زمان واقعی استفاده شود.
Cognitive Systems and Signal Processing in Image Processing presents different frameworks and applications of cognitive signal processing methods in image processing. This book provides an overview of recent applications in image processing by cognitive signal processing methods in the context of Big Data and Cognitive AI. It presents the amalgamation of cognitive systems and signal processing in the context of image processing approaches in solving various real-word application domains. This book reports the latest progress in cognitive big data and sustainable computing.
Various real-time case studies and implemented works are discussed for better understanding and more clarity to readers. The combined model of cognitive data intelligence with learning methods can be used to analyze emerging patterns, spot business opportunities, and take care of critical process-centric issues for computer vision in real-time.
Front matter Copyright Contributors A cognitive approach to digital health based on deep learning focused on classification and recognition of white blood cells Introduction Literature review Cognitive systems concepts Cognitive systems in medical image processing Cognitive systems in the context of predictive analytics Neural networks concepts Convolutional neural network Deep learning Metaheuristic algorithm proposal (experiment) Results and discussion Conclusions Future research directions References Assessment of land use land cover change detection in multitemporal satellite images using machine learning algorithms Introduction Related works Gaps identified in existing works Proposed work Study area Data collection Methodology Maximum likelihood classification Results and discussions Maximum likelihood classification Change detection based on MLC maps Normalized difference vegetative index classification Change detection based on NDVI classified maps Accuracy assessment Conclusion References Further reading A web application for crowd counting by building parallel and direct connection-based CNN architectures Introduction Background CNN algorithmic model Data process Gaussian blur algorithms Binary space partitioning architecture Core model structure Transfer learning Activation function Batch normalization ADCCNet model Train model by learning data Data enhancement Criterion Gradient optimization Analyze error Underfitting and overfitting Loss value Training epochs Learning rate Verify web applications Login and register module Display module Solve picture module Take a question module Experimental results Future research directions Conclusion Appendices An example of ShangHaiTech dataset .mat file Verify web applications feature showcase Acknowledgment References A cognitive system for lip identification using convolution neural networks Introduction Survey of related work Summary of existing approaches Shortcomings of previous work Motivation Feature extraction and classification using CNN Cognitive computing Convolution network Database Results Conclusion and future work References An overview of the impact of PACS as health informatics and technology e-health in healthcare management Introduction Review literature on cognitive systems concepts Cognitive systems in medical image processing Cognitive systems in the context of predictive analytics Review literature on implementation of PACS systems PACS systems application PACS environments and systems management PACS extension in the healthcare management Discussion Future trends Conclusions References Change detection techniques for a remote sensing application: An overview Introduction Remote sensing data Data preprocessing Change detection technique Algebra approach Image differencing Image ratioing Image regression Vegetation index differencing Change vector analysis Transformation approach Principal component analysis Kauth-Thomas transformation/tasseled cap transformation Chi-square transform Classification approaches Postclassification comparison Expectation-maximization algorithm Hybrid change detection Artificial neural network Geographical information system approach Visual analysis Other approaches Conclusion References Facial emotion recognition via stationary wavelet entropy and particle swarm optimization Introduction Related work of facial emotion recognition Structure of this chapter Dataset Methodology Stationary wavelet entropy Single-hidden-layer feedforward neural network Particle swarm optimization Implementation Measure Experiment results and discussions Confusion matrix of proposed method Statistical results Comparison to state-of-the-art approaches Conclusions References A research insight toward the significance in extraction of retinal blood vessels from fundus images and its various implementations Introduction Organization of the chapter Literature review Role of retinal blood vessels in disease detection Retinal pathologies Cardiovascular diseases Cerebrovascular diseases Cancers Different methods for segmentation Supervised techniques Unsupervised technique Extraction of retinal blood vessels using supervised technique Materials Methodology Preprocessing Feature extraction Gabor filtering Feature vector construction and principal component analysis Supervised technique Postprocessing Result Qualitative analysis Quantitative analysis Performance comparison of our method with the state-of-the-art methods in terms of execution time Extraction of retinal blood vessels using unsupervised technique Materials Proposed method Preprocessing Segmentation Postprocessing Result Qualitative analysis Quantitative analysis Comparison of our method against existing methods Conclusion Future scope References Hearing loss classification via stationary wavelet entropy and cat swarm optimization Introduction Dataset Methodology Stationary wavelet entropy Single-hidden-layer feedforward neural network Cat swarm optimization Implementation Measure Experiment results and discussions Confusion matrix of proposed method Statistical results Comparison to state-of-the-art approaches Conclusions References Early detection of breast cancer using efficient image processing algorithms and prediagnostic techniques: A detailed approach Introduction Literature review Breast cancer: A brief introduction Overview of breast cancer Symptoms of breast cancer Categories of breast cancer Inflammatory breast cancer Triple-negative breast cancer Metastatic breast cancer Male breast cancer Breast cancer stages Diagnosis of breast cancer Breast cancer treatment Surgery Radiation therapy Chemotherapy Hormone therapy Medications Risk factors for breast cancer Breast cancer survival rate Breast cancer prevention Lifestyle factors Breast cancer screening Preemptive treatment Breast test Self-test Breast test by a doctor Breast cancer awareness Cognitive approaches in breast cancer techniques Cognitive image processing Knowledge-based vision systems Integration of knowledge bases in vision systems Image processing, annotation, and retrieval Human activity recognition Medical images analysis Proposed methodology Workflow Algorithms used Results and discussion Conclusion References Groundnut leaves and their disease, deficiency, and toxicity classification using a machine learning approach Introduction Groundnut crop Major diseases Major deficiencies Disease, deficiency, and toxicity management Lack of accurate detection Literature review Methodology Image dataset Image acquisition Preprocessing of the acquired image Image segmentation Clustering technique K-means clustering algorithm Feature extraction Classification Support vector machine classifier Random forest classifier K-nearest neighbor classifier Decision tree classifier Neural network classifier Results and discussion Experimental results Performance evaluation Classification matrix Conclusion Acknowledgment References EEG-based computer-aided diagnosis of autism spectrum disorder Introduction Related work Proposed work Performance analysis Conclusion References Toward improving the accuracy in the diagnosis of schizophrenia using functional magnetic resonance imaging (fMRI) Introduction Literature review Methodology Database Subject fMRI and acquisition of fMRI Preprocessing Principal component analysis Independent component analysis Feature extraction Local binary pattern Modified volume local binary pattern Feature selection Classification LDA, NN, and SVM Performance evaluation Results and discussion Performance evaluation by varying the number of ICs Using LDA classifier Using NN classifier Using SVM classifier Performance evaluation using different types of LDA, NN, and SVM Performance evaluation using LDA classifier with different types of discriminants Performance analysis using NN classifier with various distance measures Performance estimation using SVM classifier with other types of kernels Discussion Comparison with the existing system Conclusion References An artificial intelligence mediated integrated wearable device for diagnosis of cardio through remote monitoring Introduction Related work Proposed work Feature extraction ECG filtering Principal component analysis Steps in principal components analysis BPN classifier Convolutional neural network with Boltzman Decision tree classifier K-SVD with MOD Pan-Tomkinson algorithm Performance analysis Conclusion References Deep learning for accident avoidance in a hostile driving environment Introduction Literature review Research challenges and motivation Semantic segmentation Segmentation using deep learning architecture Detection Evolution of deep models for object detection Region-based network framework Object recognition Image processing dataset Natural language processing dataset Audio/speech processing dataset Deep learning architectures Results and discussion Semantic segmentation using deep learning Vehicle detection using deep learning Vehicle recognition using deep learning Conclusion and future work References Risk analysis of coronavirus patients who have underlying chronic cancer Introduction Related work About COVID-19 with chronic diseases Experimental analysis Method and data source Dataset Evaluation metrics Implementation and result Result of the study Discussion Conclusion References Index A B C D E F G H I J K L M N O P R S T U V W X Y