دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Sandeep Kumar (editor), Rohit Raja (editor), Shrikant Tiwari (editor), Shilpa Rani (editor) سری: ISBN (شابک) : 111979160X, 9781119791607 ناشر: Wiley-Scrivener سال نشر: 2022 تعداد صفحات: 384 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 Mb
در صورت تبدیل فایل کتاب Cognitive Behavior and Human Computer Interaction Based on Machine Learning Algorithms به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رفتار شناختی و تعامل انسان با کامپیوتر بر اساس الگوریتم های یادگیری ماشین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر شیوهای که انسانها و رایانهها با سطوح فزایندهای از پیچیدگی و سادگی تعامل دارند، تمرکز دارد. با فرض دانش بسیار کم، این کتاب محتوایی در زمینه تئوری، شناخت، طراحی، ارزیابی و تنوع کاربران ارائه میکند. هدف آن توضیح علل اساسی مشکلات شناختی، اجتماعی و سازمانی است که معمولاً به توصیف روشهای توانبخشی برای فرآیندهای شناختی خاص اختصاص دارد. این کتاب الگوریتمهای جدیدی را برای مدلسازی توصیف میکند که برای دانشمندان علوم شناختی از همه انواع قابل دسترسی است. این کتاب ذاتاً بینرشتهای است و تحقیقات اصلی را در زمینههای محاسبات، مهندسی، هوش مصنوعی، روانشناسی، زبانشناسی، و اجتماعی و سیستم منتشر میکند. سازمان، همانطور که در طراحی، پیاده سازی، کاربرد، تجزیه و تحلیل و ارزیابی سیستم های تعاملی اعمال می شود. تحقیقات یادگیری ماشین به مدت یک دهه در سطح بین المللی در کاربردهای مختلف انجام شده است. رویکرد یادگیری جدید بیشتر در کاربردهای شناختی مبتنی بر یادگیری ماشین استفاده می شود. این امر به دانشمندان و محققانی که در علوم اعصاب، تصویربرداری عصبی، نقشهبرداری و مدلسازی مغز مبتنی بر یادگیری ماشین و غیره کار میکنند، جهت تحقیقات آینده را هدایت میکند. |
The book focuses on the way that human beings and computers interact to ever increasing levels of both complexity and simplicity. Assuming very little knowledge, the book provides content on theory, cognition, design, evaluation, and user diversity. It aims to explain the underlying causes of the cognitive, social and organizational problems typically are devoted to descriptions of rehabilitation methods for specific cognitive processes. This book describes new algorithms for modeling accessible to cognitive scientists of all varieties. The book is inherently interdisciplinary, publishing original research in the fields of computing, engineering, artificial intelligence, psychology, linguistics, and social and system organization, as applied to the design, implementation, application, analysis, and evaluation of interactive systems. Machine learning research has been being carried out for a decade at international level in various applications. The new learning approach is mostly used in machine learning based cognitive applications. This will give direction for future research to scientists and researchers working in neuroscience, neuro-imaging, machine learning based brain mapping and modeling etc. |
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface 1 Cognitive Behavior: Different Human-Computer Interaction Types 1.1 Introduction: Cognitive Models and Human-Computer User Interface Management Systems 1.1.1 Interactive User Behavior Predicting Systems 1.1.2 Adaptive Interaction Observatory Changing Systems 1.1.3 Group Interaction Model Building Systems 1.1.4 Human-Computer User Interface Management Systems 1.1.5 Different Types of Human-Computer User Interfaces 1.1.6 The Role of User Interface Management Systems 1.1.7 Basic Cognitive Behavioral Elements of Human-Computer User Interface Management Systems 1.2 Cognitive Modeling: Decision Processing User Interacting Device System (DPUIDS) 1.2.1 Cognitive Modeling Automation of Decision Process Interactive Device Example 1.2.2 Cognitive Modeling Process in the Visualization Decision Processing User Interactive Device System 1.3 Cognitive Modeling: Decision Support User Interactive Device Systems (DSUIDS) 1.3.1 The Core Artifacts of the Cognitive Modeling of User Interaction 1.3.2 Supporting Cognitive Model for Interaction Decision Supportive Mechanism 1.3.3 Representational Uses of Cognitive Modeling for Decision Support User Interactive Device Systems 1.4 Cognitive Modeling: Management Information User Interactive Device System (MIUIDS) 1.5 Cognitive Modeling: Environment Role With User Interactive Device Systems 1.6 Conclusion and Scope References 2 Classification of HCI and Issues and Challenges in Smart Home HCI Implementation 2.1 Introduction 2.2 Literature Review of Human-Computer Interfaces 2.2.1 Overview of Communication Styles and Interfaces 2.2.2 Input/Output 2.2.3 Older Grown-Ups 2.2.4 Cognitive Incapacities 2.3 Programming: Convenience and Gadget Explicit Substance 2.4 Equipment: BCI and Proxemic Associations 2.4.1 Brain-Computer Interfaces 2.4.2 Ubiquitous Figuring—Proxemic Cooperations 2.4.3 Other Gadget-Related Angles 2.5 CHI for Current Smart Homes 2.5.1 Smart Home for Healthcare 2.5.2 Savvy Home for Energy Efficiency 2.5.3 Interface Design and Human-Computer Interaction 2.5.4 A Summary of Status 2.6 Four Approaches to Improve HCI and UX 2.6.1 Productive General Control Panel 2.6.2 Compelling User Interface 2.6.3 Variable Accessibility 2.6.4 Secure Privacy 2.7 Conclusion and Discussion References 3 Teaching-Learning Process and BrainComputer Interaction Using ICT Tools 3.1 The Concept of Teaching 3.2 The Concept of Learning 3.2.1 Deficient Visual Perception in a Student 3.2.2 Proper Eye Care (Vision Management) 3.2.3 Proper Ear Care (Hearing Management) 3.2.4 Proper Mind Care (Psychological Management) 3.3 The Concept of Teaching-Learning Process 3.4 Use of ICT Tools in Teaching-Learning Process 3.4.1 Digital Resources as ICT Tools 3.4.2 Special ICT Tools for Capacity Building of Students and Teachers 3.4.2.1 CogniFit 3.4.2.2 Brain-Computer Interface 3.5 Conclusion References 4 Denoising of Digital Images Using Wavelet-Based Thresholding Techniques: A Comparison 4.1 Introduction 4.2 Literature Survey 4.3 Theoretical Analysis 4.3.1 Wavelet Transform 4.3.2 Types of Thresholding 4.3.3 Performance Evaluation Parameters 4.3.3.1 Mean Squared Error 4.3.3.2 Peak Signal–to-Noise Ratio 4.3.3.3 Structural Similarity Index Matrix 4.4 Methodology 4.5 Results and Discussion 4.6 Conclusions References 5 Smart Virtual Reality–Based Gaze-Perceptive Common Communication System for Children With Autism Spectrum Disorder 5.1 Need for Focus on Advancement of ASD Intervention Systems 5.2 Computer and Virtual Reality–Based Intervention Systems 5.3 Why Eye Physiology and Viewing Pattern Pose Advantage for Affect Recognition of Children With ASD 5.4 Potential Advantages of Applying the Proposed Adaptive Response Technology to Autism Intervention 5.5 Issue 5.6 Global Status 5.7 VR and Adaptive Skills 5.8 VR for Empowering Play Skills 5.9 VR for Encouraging Social Skills 5.10 Public Status 5.11 Importance 5.12 Achievability of VR-Based Social Interaction to Cause Variation in Viewing Pattern of Youngsters With ASD 5.13 Achievability of VR-Based Social Interaction to Cause Variety in Eye Physiological Indices for Kids With ASD 5.14 Possibility of VR-Based Social Interaction to Cause Variations in the Anxiety Level for Youngsters With ASD References 6 Construction and Reconstruction of 3D Facial and Wireframe Model Using Syntactic Pattern Recognition 6.1 Introduction 6.2 Literature Survey 6.3 Proposed Methodology 6.3.2.1 Facial Feature Extraction 6.3.2.2 Syntactic Pattern Recognition 6.3.2.3 Dense Feature Extraction 6.4 Datasets and Experiment Setup 6.5 Results 6.6 Conclusion References 7 Attack Detection Using Deep Learning–Based Multimodal Biometric Authentication System 7.1 Introduction 7.2 Proposed Methodology 7.2.1 Expert One 7.2.2 Expert Two 7.2.3 Decision Level Fusion 7.3 Experimental Analysis 7.3.1 Datasets 7.3.2 Setup 7.3.3 Results 7.4 Conclusion and Future Scope References 8 Feature Optimized Machine Learning Framework for Unbalanced Bioassays 8.1 Introduction 8.2 Related Work 8.3 Proposed Work 8.3.1 Class Balancing Using Class Balancer 8.3.2 Feature Selection 8.3.3 Ensemble Classification 8.4 Experimental 8.4.1 Dataset Description 8.4.2 Experimental Setting 8.5 Result and Discussion 8.5.1 Performance Evaluation 8.6 Conclusion References 9 Predictive Model and Theory of Interaction 9.1 Introduction 9.2 Related Work 9.3 Predictive Analytics Process 9.3.1 Requirement Collection 9.3.2 Data Collection 9.3.3 Data Analysis and Massaging 9.3.4 Statistics and Machine Learning 9.3.5 Predictive Modeling 9.3.6 Prediction and Monitoring 9.4 Predictive Analytics Opportunities 9.5 Classes of Predictive Analytics Models 9.6 Predictive Analytics Techniques 9.6.1 Decision Tree 9.6.2 Regression Model 9.6.3 Artificial Neural Network 9.6.4 Bayesian Statistics 9.6.5 Ensemble Learning 9.6.6 Gradient Boost Model 9.6.7 Support Vector Machine 9.6.8 Time Series Analysis 9.6.9 k-Nearest Neighbors (k-NN) 9.6.10 Principle Component Analysis 9.7 Dataset Used in Our Research 9.8 Methodology 9.8.1 Comparing Link-Level Features 9.8.2 Comparing Feature Models 9.9 Results 9.10 Discussion 9.11 Use of Predictive Analytics 9.11.1 Banking and Financial Services 9.11.2 Retail 9.11.3 Well-Being and Insurance 9.11.4 Oil Gas and Utilities 9.11.5 Government and Public Sector 9.12 Conclusion and Future Work References 10 Advancement in Augmented and Virtual Reality 10.1 Introduction 10.2 Proposed Methodology 10.2.1 Classification of Data/Information Extracted 10.2.2 The Phase of Searching of Data/Information 10.3 Results 10.3.1 Original Copy Publication Evolution 10.3.2 General Information/Data Analysis 10.3.2.1 Nations 10.3.2.2 Themes 10.3.2.3 R&D Innovative Work 10.3.2.4 Medical Services 10.3.2.5 Training and Education 10.3.2.6 Industries 10.4 Conclusion References 11 Computer Vision and Image Processing for Precision Agriculture 11.1 Introduction 11.2 Computer Vision 11.3 Machine Learning 11.3.1 Support Vector Machine 11.3.2 Neural Networks 11.3.3 Deep Learning 11.4 Computer Vision and Image Processing in Agriculture 11.4.1 Plant/Fruit Detection 11.4.2 Harvesting Support 11.4.3 Plant Health Monitoring Along With Disease Detection 11.4.4 Vision-Based Vehicle Navigation System for Precision Agriculture 11.4.5 Vision-Based Mobile Robots for Agriculture Applications 11.5 Conclusion References 12 A Novel Approach for Low-Quality Fingerprint Image Enhancement Using Spatial and Frequency Domain Filtering Techniques 12.1 Introduction 12.2 Existing Works for the Fingerprint Ehancement 12.2.1 Spatial Domain 12.2.2 Frequency Domain 12.2.3 Hybrid Approach 12.3 Design and Implementation of the Proposed Algorithm 12.3.1 Enhancement in the Spatial Domain 12.3.2 Enhancement in the Frequency Domain 12.4 Results and Discussion 12.4.1 Visual Analysis 12.4.2 Texture Descriptor Analysis 12.4.3 Minutiae Ratio Analysis 12.4.4 Analysis Based on Various Input Modalities 12.5 Conclusion and Future Scope References 13 Elevate Primary Tumor Detection Using Machine Learning 13.1 Introduction 13.2 Related Works 13.3 Proposed Work 13.3.1 Class Balancing 13.3.2 Classification 13.3.3 Eliminating Using Ranker Algorithm 13.4 Experimental Investigation 13.4.1 Dataset Description 13.4.2 Experimental Settings 13.5 Result and Discussion 13.5.1 Performance Evaluation 13.5.2 Analytical Estimation of Selected Attributes 13.6 Conclusion 13.7 Future Work References 14 Comparative Sentiment Analysis Through Traditional and Machine Learning-Based Approach 14.1 Introduction to Sentiment Analysis 14.1.1 Sentiment Definition 14.1.2 Challenges of Sentiment Analysis Tasks 14.2 Four Types of Sentiment Analyses 14.3 Working of SA System 14.4 Challenges Associated With SA System 14.5 Real-Life Applications of SA 14.6 Machine Learning Methods Used for SA 14.7 A Proposed Method 14.8 Results and Discussions 14.9 Conclusion References 15 Application of Artificial Intelligence and Computer Vision to Identify Edible Bird’s Nest 15.1 Introduction 15.2 Prior Work 15.2.1 Low-Dimensional Color Features 15.2.2 Image Processing for Automated Grading 15.2.3 Automated Classification 15.3 Auto Grading of Edible Birds Nest 15.3.1 Feature Extraction 15.3.2 Curvature as a Feature 15.3.3 Amount of Impurities 15.3.4 Color of EBNs 15.3.5 Size—Total Area 15.4 Experimental Results 15.4.1 Data Pre-Processing 15.4.2 Auto Grading 15.4.3 Auto Grading of EBNs 15.5 Conclusion Acknowledgments References 16 Enhancement of Satellite and Underwater Image Utilizing Luminance Model by Color Correction Method 16.1 Introduction 16.2 Related Work 16.3 Proposed Methodology 16.3.1 Color Correction 16.3.2 Contrast Enhancement 16.3.3 Multi-Fusion Method 16.4 Investigational Findings and Evaluation 16.4.1 Mean Square Error 16.4.2 Peak Signal–to-Noise Ratio 16.4.3 Entropy 16.5 Conclusion References Index EULA