دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Majid Amidpour, Mohammad Hasan Khoshgoftar Manesh سری: ISBN (شابک) : 9780128172490, 0128172495 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: [394] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 28 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Cogeneration and polygeneration systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های تولید همزمان و چند نسلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستمهای تولید همزمان و چند تولید، مجموعهای از مدرنترین روشهای مدلسازی، طراحی، تحلیل و بهینهسازی را برای ایجاد و ابزارآلات مجدد بهینه ترکیبی حرارت و توان (CHP) و سیستمهای انرژی چند تولیدی بررسی میکنند. این کتاب تجزیه و تحلیل اگزرژتیک و ترمواقتصادی و ابزارهای مدلسازی و شبیهسازی مرتبط را برای اطلاع از عملکرد و طراحی سیستمها در نیروگاههای تولید همزمان مدرن اتخاذ میکند. فصل ها یک رویکرد روشمند برای طراحی، بهره برداری و عیب یابی سیستم های تولید همزمان زمانی که با فرآیندهای صنعتی ادغام می شوند، ارائه می دهند. اهداف تولید همزمان، اثرات زیست محیطی، ادغام کل سایت، و مسائل در دسترس بودن و قابلیت اطمینان به طور عمیق مورد بررسی قرار می گیرند. تجزیه و تحلیل اگزرژتیک و اگزرژواکونومیک را برای اهداف بهینه سازی سیستم های CHP بررسی می کند مسائل در دسترس بودن و قابلیت اطمینان را در سیستم های تولید همزمان بررسی می کند.
Cogeneration and Polygeneration Systems explores the suite of state-of-the-art modeling, design, analysis and optimization procedures for creating and retooling optimally efficient combined heat and power (CHP) and polygeneration energy systems. The book adopts exergetic and thermoeconomic analysis and related modeling and simulation tools to inform performance and systems design in modern cogeneration plants. Chapters provide a methodical approach to the design, operation and troubleshooting of cogeneration systems when they are integrated with industrial processes. Cogeneration targets, environmental impacts, total site integration, and availability and reliability issues are addressed in-depth. Explores exergetic and exergoeconomic analysis for optimization purposes of CHP systems Addresses availability and reliability issues within cogeneration systems Reviews modern polygeneration systems based on renewable energy resources and fuel cells
Cogeneration and Polygeneration Systems Copyright Dedication Contents Preface Acknowledgments 1 Cogeneration and polygeneration 1.1 Introduction 1.2 Fundamental of cogeneration 1.3 Analysis of combined heat and power system 1.4 Trigeneration 1.5 Comparison of combined cooling, heating, and power and stand-alone system 1.6 History of cogeneration 1.7 Importance of deployment 1.8 Polygeneration 1.9 Conclusion References 2 Main components of cogeneration and polygeneration systems 2.1 Introduction 2.2 Steam turbines 2.3 Gas turbine 2.4 Combined cycle-based cogeneration plants 2.5 Internal combustion engine 2.6 Stirling engines 2.7 Fuel cell References 3 Applications of cogeneration and polygeneration 3.1 Introduction 3.2 Main application 3.2.1 Industrial 3.2.2 Commercial 3.2.3 Institutional 3.3 Prospects for cogeneration in Europe 3.3.1 Fiona Riddoch, COGEN Europe, Belgium 3.3.2 Germany—aiming to double cogeneration by 2020 3.3.3 Spain—Upbeat for combined heat and power 3.3.4 Austria—The Green Approach 3.4 Japan 3.5 China 3.6 The United States 3.7 Other countries References 4 Thermodynamic modeling and simulation of cogeneration and polygeneration systems 4.1 Introduction 4.1.1 The first law of thermodynamics 4.1.2 The second law of thermodynamics 4.2 Modeling of CGAM cogeneration plant 4.3 Thermodynamic modeling of a combined 4.4 Thermodynamic modeling of a polygeneration system 4.5 Thermodynamic modeling of a hybrid References 5 Exergy and thermoeconomic evaluation of cogeneration and polygeneration systems 5.1 Introduction 5.2 Definition of exergy 5.2.1 Dead state 5.2.2 Dead state limited 5.2.3 Definition of the environment from the perspective of exergy analysis 5.2.4 Exergy 5.2.5 Thermoeconomic 5.3 Exergy and thermoeconomic modeling 5.3.1 Physical exergy 5.3.2 Chemical exergy 5.3.3 Exergy destruction 5.3.4 Exergoeconomic modeling 5.3.5 Exergy destruction level and exergy cost destruction level concept 5.4 Case studies 5.4.1 Exergy and exergoeconomic modeling of CGAM cogeneration plant 5.4.2 Exergy and exergoeconomic modeling of a CCHP 5.4.3 Exergy and exergoeconomic modeling of a polygeneration system References 6 Advanced exergetic evaluation of cogeneration and polygeneration systems 6.1 Introduction 6.2 Advanced exergy-based variables 6.2.1 Endogenous/exogenous 6.2.2 Avoidable/unavoidable 6.3 Methodology for splitting the variables 6.3.1 Unavoidable and avoidable parts 6.3.2 Endogenous and exogenous parts 6.3.2.1 Simple approach 6.3.2.2 Thermodynamic approach 6.3.2.3 Engineering approach 6.4 Advanced exergy destruction Level representation 6.5 Application of advanced exergy-based analysis 6.5.1 CGAM problem 6.5.2 Liquefied natural gas cogeneration References 7 Total Site integration and cogeneration systems 7.1 Introduction 7.2 Total Site integration 7.3 Total Site profiles 7.4 Total Site procedure 7.5 Case studies 7.5.1 Case 1. A conventional Total Site analysis 7.5.2 Case 2. Integration of site utility and thermal power plant References 8 Desalinated water production in cogeneration and polygeneration systems 8.1 Introduction 8.2 Main desalination technologies 8.2.1 Multistage flash distillation desalination 8.2.2 Multiple-effect distillation desalination 8.2.3 Reverse osmosis desalination 8.3 Integration with thermal power plants 8.4 Integration with of gas turbines 8.5 Integration with site utility industrial plants References 9 Cogeneration and polygeneration targets 9.1 Introduction 9.2 Cogeneration issues 9.3 Significant models 9.3.1 Exergetic model 9.3.2 T–H model 9.3.3 Turbine hardware model 9.3.4 Harell method 9.3.5 Sorin and Hammache method 9.3.6 Medina-Flores and Picón-Núñez model 9.3.7 Bandyopadhyay model 9.3.8 Iterative bottom-to-top model 9.3.9 Kapil model 9.3.10 Actual steam level temperature model 9.3.11 Automated targeting method 9.3.12 Ren et al. model 9.3.13 Other models 9.3.14 Software 9.4 Comparison of different methods 9.5 Case study 9.6 Conclusion References 10 R-curve tool 10.1 Introduction 10.2 Notation of R-curve 10.3 R-curve tool 10.3.1 Ideal R-curve or grassroots R-curve 10.3.2 Actual R-curve 10.4 Developing the extended R-curves 10.4.1 Cogeneration targeting 10.4.2 R-ratio against ED, CD, and BD 10.4.3 Advanced representation of Exergy Destruction Level 10.4.4 The algorithm proposed for advanced analyses 10.5 Extended R-curve using in liquefied natural gas cogeneration 10.6 Integrating the desalination systems with the help of R-curve 10.6.1 Reverse osmosis desalination 10.6.2 Multieffect distillation desalination system 10.6.3 Integration effect on cogeneration efficiency factor 10.6.4 Case studies 10.6.4.1 Specifications of desalination systems 10.6.4.2 First case study 10.6.4.3 Second case study References 11 Environmental impacts consideration 11.1 Introduction 11.2 Life cycle assessment 11.2.1 Stages of life cycle assessment framework 11.2.2 Applications of life cycle assessment 11.2.3 Benefits of life cycle assessment 11.2.4 Design a life cycle assessment project 11.2.5 Real planning and process management 11.2.6 How is life cycle assessment done? 11.3 Eco-indicator 99 11.4 Exergoenvironmental analysis 11.5 Estimation of greenhouse gas emissions 11.6 Footprint 11.6.1 Carbon footprint 11.6.2 Emission footprint 11.6.3 Energy footprint 11.6.4 Water footprint 11.7 Environmental targeting 11.8 Case studies 11.8.1 Case 1 11.8.2 Case 2 References 12 Combined heating, cooling, hydrogen, and power production 12.1 Introduction 12.2 System description 12.3 Modeling and analysis 12.3.1 Assumptions 12.3.2 Modeling and analysis 12.3.2.1 Ejector modeling 12.3.2.2 Proton-exchange membrane electrolyzer 12.3.2.3 Energy and exergy analysis 12.3.2.4 Exergoeconomic modeling 12.3.2.5 Overall performance evaluation 12.4 Validation of model 12.4.1 Performance evaluation References 13 Modern polygeneration systems 13.1 Introduction 13.1.1 Fuel cell 13.1.2 Solar energy 13.2 Fuell cell integration 13.2.1 Fuel cell+thermoelectric generator 13.2.1.1 Fuel cell—gas turbine 13.2.2 Fuel cell+heat pump/refrigeration 13.3 Fuel cell+absorption chillers 13.3.1 Fuel cell—desalination systems 13.3.2 Microbial cell integration 13.4 Solar energy 13.4.1 General overview 13.4.2 Polygeneration with solar energy 13.4.2.1 The parabolic trough type 13.4.2.2 Solar power tower–driven systems 13.4.2.3 Parabolic dish–driven systems 13.4.3 Photovoltaic/thermal/CPVT collector–driven systems 13.5 Hybrid solar polygeneration systems 13.5.1 Integrated solar–biomass-driven devices 13.5.1.1 Hybrid parabolic trough collectors–biomass 13.5.1.2 Hybrid solar power tower–biomass 13.5.1.3 Hybrid CPVT collectors–biomass 13.5.2 Hybrid solar–geothermal 13.5.2.1 Hybrid parabolic trough collectors–geothermal 13.5.2.2 Hybrid solar power tower–geothermal 13.5.2.3 Hybrid photovoltaic/thermal/CPVT collectors–geothermal 13.5.3 Hybrid photovoltaic/thermal–ocean 13.5.4 Hybrid solar power tower–wind turbines 13.5.5 Hybrid solar–wind/ocean 13.5.6 Other hybrid models References 14 Optimization of cogeneration and polygeneration systems 14.1 Introduction 14.2 Optimization problem 14.2.1 System boundaries 14.2.2 Objective functions and system criteria 14.2.3 Decision variables 14.2.4 Constraints 14.3 Optimization techniques 14.3.1 Classical optimization 14.3.2 Numerical optimization techniques 14.3.3 Metaheuristic optimization techniques 14.4 Multiobjective optimization 14.5 Case studies 14.5.1 Case 1: Solar hybrid cogeneration plant 14.5.1.1 General overview 14.5.1.2 Solar field design 14.5.1.3 Optimization 14.5.1.4 Physical constraints 14.5.1.5 Optimization runs 14.5.1.5.1 Conventional case 14.5.1.5.2 Solar hybrid case 14.5.2 Case 2: Optimal design of utility systems using targeting strategy 14.5.3 Grassroots case study 14.5.4 Optimization results 14.5.5 Case 3: Optimal design of thermoelectric generator-parabolic trough collector-driven polygeneration system 14.5.5.1 General overview 14.5.5.2 Multiobjective optimization method 14.5.6 Case 4: Biomass–solar-driven polygeneration system 14.5.6.1 General overview 14.5.6.2 Optimization References 15 Reliability and availability of cogeneration and polygeneration systems 15.1 Introduction 15.2 Definitions 15.3 Reliability modeling of utility system 15.4 Case studies 15.4.1 Case 1 15.4.2 Case 2 References 16 Software tools 16.1 Introduction 16.1.1 Power plants 16.1.1.1 GT PRO 16.1.1.2 GT MASTER 16.1.1.3 STEAM PRO 16.1.1.4 STEAM MASTER 16.1.1.5 THERMOFLEX 16.1.1.6 GateCycle 16.1.1.7 EBSILON 16.1.1.8 Cycle-Tempo 16.1.2 Process industries 16.1.2.1 Aspen Plus 16.1.2.2 Aspen HYSYS 16.1.2.3 Petro-SIM 16.1.2.4 UniSim 16.1.2.5 ProMAX 16.1.2.6 AVEVA PRO/II 16.1.2.7 i-Steam 16.1.2.8 STAR 16.1.3 Renewable energy 16.1.3.1 TRNSYS 16.1.3.2 HOMER Pro 16.1.3.3 RETScreen 16.1.3.4 System Advisor Model 16.1.4 Computer code 16.1.4.1 EES 16.1.4.2 Thermolib 16.1.4.3 MATLAB References Appendix A A A Calculation of thermodynamic properties for several substances B Seawater properties correlations B.1 Specific volume and density of seawater B.2 Specific enthalpy of seawater and pure water B.3 Specific entropy of seawater and pure water C Cost functions D Weight function E Eco-indicator for some components References Index