ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Cody's Data Cleaning Techniques Using SAS

دانلود کتاب تکنیک های پاک سازی داده های کودی با استفاده از SAS

Cody's Data Cleaning Techniques Using SAS

مشخصات کتاب

Cody's Data Cleaning Techniques Using SAS

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1629607967, 9781629607962 
ناشر: SAS Institute 
سال نشر: 2017 
تعداد صفحات: 234 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 مگابایت 

قیمت کتاب (تومان) : 38,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Cody's Data Cleaning Techniques Using SAS به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تکنیک های پاک سازی داده های کودی با استفاده از SAS نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تکنیک های پاک سازی داده های کودی با استفاده از SAS

این کتاب که به سبک آموزشی و غیررسمی امضای ران کودی نوشته شده است، برنامه‌ها و ماکروهای پاک‌سازی داده‌ها را توسعه داده و نشان می‌دهد که می‌توانید از آنها به‌عنوان نوشته شده یا اصلاح کنید که کار تمیز کردن داده‌ها را آسان‌تر، سریع‌تر و کارآمدتر می‌کند. --


توضیحاتی درمورد کتاب به خارجی

Written in Ron Cody's signature informal, tutorial style, this book develops and demonstrates data cleaning programs and macros that you can use as written or modify which will make your job of data cleaning easier, faster, and more efficient. --



فهرست مطالب

Contents
List of Programs
	Chapter 1 Working with Character Data
	Chapter 2 Using Perl Regular Expressions to Detect Data Errors
	Chapter 3 Standardizing Data
	Chapter 4 Data Cleaning Techniques for Numeric Data
	Chapter 5 Automatic Outlier Detection for Numeric Data
	Chapter 6 More Advanced Techniques for Finding Errors in Numeric Data
	Chapter 7 Describing Issues Related to Missing and Special Values (Such as 999)
	Chapter 8 Working with SAS Dates
	Chapter 9 Looking for Duplicates and Checking Data with Multiple Observations per Subject
	Chapter 10 Working with Multiple Files
	Chapter 11 Using PROC COMPARE to Perform Data Verification
	Chapter 12 Correcting Errors
	Chapter 13 Creating Integrity Constraints and Audit Trails
About This Book
	What Does This Book Cover?
	Is This Book for You?
	What Are the Prerequisites for This Book?
	What’s New in This Edition?
	What Should You Know about the Examples?
	We Want to Hear from You
About The Author
Introduction
Chapter 1: Working with Character Data
	Introduction
	Using PROC FREQ to Detect Character Variable Errors
	Changing the Case of All Character Variables in a Data Set
	A Summary of Some Character Functions (Useful for Data Cleaning)
	Checking that a Character Value Conforms to a Pattern
	Using a DATA Step to Detect Character Data Errors
	Using PROC PRINT with a WHERE Statement to Identify Data Errors
	Using Formats to Check for Invalid Values
	Creating Permanent Formats
	Removing Units from a Value
	Removing Non-Printing Characters from a Character Value
	Conclusions
Chapter 2: Using Perl Regular Expressions to Detect Data Errors
	Introduction
	Describing the Syntax of Regular Expressions
	Checking for Valid ZIP Codes and Canadian Postal Codes
	Searching for Invalid Email Addresses
	Verifying Phone Numbers
	Converting All Phone Numbers to a Standard Form
	Developing a Macro to Test Regular Expressions
	Conclusions
Chapter 3: Standardizing Data
	Introduction
	Using Formats to Standardize Company Names
	Creating a Format from a SAS Data Set
	Using TRANWRD and Other Functions to Standardize Addresses
	Using Regular Expressions to Help Standardize Addresses
	Performing a \"Fuzzy\" Match between Two Files
	Conclusions
Chapter 4: Data Cleaning Techniques for Numeric Data
	Introduction
	Using PROC UNIVARIATE to Examine Numeric Variables
	Describing an ODS Option to List Selected Portions of the Output
	Listing Output Objects Using the Statement TRACE ON
	Using a PROC UNIVARIATE Option to List More Extreme Values
	Presenting a Program to List the 10 Highest and Lowest Values
	Presenting a Macro to List the n Highest and Lowest Values
	Describing Two Programs to List the Highest and Lowest Values by Percentage
	Using Pre-Determined Ranges to Check for Possible Data Errors
	Identifying Invalid Values versus Missing Values
	Checking Ranges for Several Variables and Generating a Single Report
	Conclusions
Chapter 5: Automatic Outlier Detection for Numeric Data
	Introduction
	Automatic Outlier Detection (Using Means and Standard Deviations)
	Detecting Outliers Based on a Trimmed Mean and Standard Deviation
	Describing a Program that Uses Trimmed Statistics for Multiple Variables
	Presenting a Macro Based on Trimmed Statistics
	Detecting Outliers Based on the Interquartile Range
	Conclusions
Chapter 6: More Advanced Techniques for Finding Errors in Numeric Data
	Introduction
	Introducing the Banking Data Set
	Running the %Auto_Outliers Macro on Bank Deposits
	Identifying Outliers Within Each Account
	Using Box Plots to Inspect Suspicious Deposits
	Using Regression Techniques to Identify Possible Errors in the Banking Data
	Using Regression Diagnostics to Identify Outliers
	Conclusions
Chapter 7: Describing Issues Related to Missing and Special Values (Such as 999)
	Introduction
	Inspecting the SAS Log
	Using PROC MEANS and PROC FREQ to Count Missing Values
	Using DATA Step Approaches to Identify and Count Missing Values
	Locating Patient Numbers for Records where Patno is Either Missing or Invalid
	Searching for a Specific Numeric Value
	Creating a Macro to Search for Specific Numeric Values
	Converting Values Such as 999 to a SAS Missing Value
	Conclusions
Chapter 8: Working with SAS Dates
	Introduction
	Changing the Storage Length for SAS Dates
	Checking Ranges for Dates (Using a DATA Step)
	Checking Ranges for Dates (Using PROC PRINT)
	Checking for Invalid Dates
	Working with Dates in Nonstandard Form
	Creating a SAS Date When the Day of the Month Is Missing
	Suspending Error Checking for Known Invalid Dates
	Conclusions
Chapter 9: Looking for Duplicates and Checking Data with Multiple Observations per Subject
	Introduction
	Eliminating Duplicates by Using PROC SORT
	Demonstrating a Possible Problem with the NODUPRECS Option
	Reviewing First. and Last. Variables
	Detecting Duplicates by Using DATA Step Approaches
	Using PROC FREQ to Detect Duplicate IDs
	Working with Data Sets with More Than One Observation per Subject
	Identifying Subjects with n Observations Each (DATA Step Approach)
	Identifying Subjects with n Observations Each (Using PROC FREQ)
	Conclusions
Chapter 10: Working with Multiple Files
	Introduction
	Checking for an ID in Each of Two Files
	Checking for an ID in Each of n Files
	A Macro for ID Checking
	Conclusions
Chapter 11: Using PROC COMPARE to Perform Data Verification
	Introduction
	Conducting a Simple Comparison of Two Data Files
	Simulating Double Entry Verification Using PROC COMPARE
	Other Features of PROC COMPARE
	Conclusions
Chapter 12: Correcting Errors
	Introduction
	Hard Coding Corrections
	Describing Named Input
	Reviewing the UPDATE Statement
	Using the UPDATE Statement to Correct Errors in the Patients Data Set
	Conclusions
Chapter 13: Creating Integrity Constraints and Audit Trails
	Introduction
	Demonstrating General Integrity Constraints
	Describing PROC APPEND
	Demonstrating How Integrity Constraints Block the Addition of Data Errors
	Adding Your Own Messages to Violations of an Integrity Constraint
	Deleting an Integrity Constraint Using PROC DATASETS
	Creating an Audit Trail Data Set
	Demonstrating an Integrity Constraint Involving More Than One Variable
	Demonstrating a Referential Constraint
	Attempting to Delete a Primary Key When a Foreign Key Still Exists
	Attempting to Add a Name to the Child Data Set
	Demonstrating How to Delete a Referential Constraint
	Demonstrating the CASCADE Feature of a Referential Constraint
	Demonstrating the SET NULL Feature of a Referential Constraint
	Conclusions
Chapter 14: A Summary of Useful Data Cleaning Macros
	Introduction
	A Macro to Test Regular Expressions
	A Macro to List the n Highest and Lowest Values of a Variable
	A Macro to List the n% Highest and Lowest Values of a Variable
	A Macro to Perform Range Checks on Several Variables
	A Macro that Uses Trimmed Statistics to Automatically Search for Outliers
	A Macro to Search a Data Set for Specific Values Such as 999
	A Macro to Check for ID Values in Multiple Data Sets
	Conclusions
Index




نظرات کاربران