دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Lei Zhang. Le Chen
سری: Data Communication Series
ISBN (شابک) : 0367695707, 9780367695705
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 233
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 26 مگابایت
در صورت تبدیل فایل کتاب Cloud Data Center Network Architectures and Technologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Cloud Data Centre معماری و فناوری های شبکه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
معماریها و فناوریهای شبکه مرکز داده ابری با پشتیبانی از دانش فنی و تجربه گسترده هواوی در زمینه شبکه مرکز داده (DCN) نوشته شده است. درک آن از الزامات خدمات مشتری این کتاب به تفصیل طراحی معماری، پیادهسازی فنی، برنامهریزی و طراحی، و پیشنهادات استقرار DCNهای ابری را بر اساس چالشهای خدماتی که DCN ها با آن مواجه میشوند، شرح میدهد. با توصیف کلی معماری و تکامل فنی DCN ها شروع می شود، با هدف کمک به خوانندگان در درک توسعه DCN. سپس به توضیح طراحی و پیاده سازی DCN های ابری شامل مدل سرویس یک مرکز داده واحد (DC)، ساخت شبکه های فیزیکی و منطقی DCها، ساخت چندین DCN و راه حل های امنیتی DC ها می پردازد. در مرحله بعد، این کتاب عمیقاً به شیوههای استقرار DCN ابری بر اساس موارد دنیای واقعی میپردازد تا به خوانندگان کمک کند تا نحوه ساخت DCNهای ابری را بهتر درک کنند. در نهایت، این کتاب باز بودن DCN و برخی از داغترین فناوریهای آیندهنگر را معرفی میکند.
به طور خلاصه، میتوانید از این کتاب بهعنوان مرجعی برای کمک به شما در ساخت DCNهای ابری امن، قابل اعتماد، کارآمد و باز استفاده کنید. . این برای متخصصان فنی شرکتها، موسسات تحقیقاتی، بخشهای اطلاعات و DCها و همچنین معلمان و دانشجویان رشتههای مرتبط با شبکه کامپیوتری در کالجها و دانشگاهها در نظر گرفته شده است.
< /p>
نویسندگان
لی ژانگ
آقای ژانگ، معمار ارشد راه حل DCN هوآوی است. او بیش از 20 سال تجربه در طراحی محصول و راه حل شبکه و همچنین تخصص فراوانی در طراحی و توسعه محصول، برنامه ریزی و طراحی شبکه و اجرای پروژه های مهندسی شبکه دارد. او طراحی و استقرار بیش از 10 DCN در مقیاس بزرگ را برای شرکت های Fortune Global 500 در سراسر جهان رهبری کرده است.
Le Chen
Mr. چن یک مهندس مدارک راه حل DCN هوآوی با هشت سال تجربه در توسعه اسناد مربوط به محصولات و راه حل های DCN است. او در طراحی و تحویل چندین DCN سازمانی در مقیاس بزرگ شرکت کرده است. آقای چن مجموعههای اسناد فنی محبوب بسیاری مانند DCN Handbookو BGP Topic را نوشته است.
Cloud Data Center Network Architectures and Technologies has been written with the support of Huawei's vast technical knowledge and experience in the data center network (DCN) field, as well as its understanding of customer service requirements. This book describes in detail the architecture design, technical implementation, planning and design, and deployment suggestions for cloud DCNs based on the service challenges DCNs encounter. It starts by describing the overall architecture and technical evolution of DCNs, with the aim of helping readers understand the development of DCNs. It then proceeds to explain the design and implementation of cloud DCNs, including the service model of a single data center (DC), construction of physical and logical networks of DCs, construction of multiple DCNs, and security solutions of DCs. Next, this book dives deep into practices of cloud DCN deployment based on real-world cases to help readers better understand how to build cloud DCNs. Finally, this book introduces DCN openness and some of the hottest forward-looking technologies.
In summary, you can use this book as a reference to help you to build secure, reliable, efficient, and open cloud DCNs. It is intended for technical professionals of enterprises, research institutes, information departments, and DCs, as well as teachers and students of computer network-related majors in colleges and universities.
Authors
Lei Zhang
Mr. Zhang is the Chief Architect of Huawei's DCN solution. He has more than 20 years' experience in network product and solution design, as well as a wealth of expertise in product design and development, network planning and design, and network engineering project implementation. He has led the design and deployment of more than 10 large-scale DCNs for Fortune Global 500 companies worldwide.
Le Chen
Mr. Chen is a Huawei DCN Solution Documentation Engineer with eight years' experience in developing documents related to DCN products and solutions. He has participated in the design and delivery of multiple large-scale enterprise DCNs. Mr. Chen has written many popular technical document series, such as DCN Handbook and BGP Topic.
Cover Half Title Title Page Copyright Page Dedication Table of contents Preface Author Biography 1 Introduction 1.1 Reliability History 1.2 Need of Reliability in Product Design 1.3 Reliability Application and Specialized Areas 1.4 Terms and Definitions 1.5 Useful Sources for Obtaining Information on Reliability 1.6 Military and Other Reliability Documents 1.7 Scope of the Book 1.8 Problems References 2 Basic Mathematical Concepts 2.1 Introduction 2.2 Arithmetic Mean and Mean Deviation 2.2.1 Arithmetic Mean 2.2.2 Mean Deviation 2.3 Boolean Algebra Laws 2.4 Probability Definition and Properties 2.5 Useful Definitions 2.5.1 Cumulative Distribution Function 2.5.2 Probability Density Function 2.5.3 Expected Value 2.5.4 Laplace Transform 2.5.5 Laplace Transform: Final-Value Theorem 2.6 Probability Distributions 2.6.1 Binomial Distribution 2.6.2 Exponential Distribution 2.6.3 Rayleigh Distribution 2.6.4 Weibull Distribution 2.6.5 Bathtub Hazard Rate Curve Distribution 2.7 Solving First-Order Differential Equations Using Laplace Transforms 2.8 Problems References 3 Reliability Basics 3.1 Introduction 3.2 Bathtub Hazard Rate Curve 3.3 General Reliability-Related Formulas 3.3.1 Failure (or Probability) Density Function 3.3.2 Hazard Rate Function 3.3.3 General Reliability Function 3.3.4 Mean Time to Failure 3.4 Reliability Networks 3.4.1 Series Network 3.4.2 Parallel Network 3.4.3 k-out-of-m Network 3.4.4 Standby System 3.4.5 Bridge Network 3.5 Problems References 4 Reliability Evaluation Methods 4.1 Introduction 4.2 Failure Modes and Effect Analysis (FMEA) 4.3 Fault Tree Analysis (FTA) 4.3.1 Fault Tree Probability Evaluation 4.4 Markov Method 4.5 Network Reduction Approach 4.6 Decomposition Approach 4.7 Delta-Star Method 4.8 Probability Tree Analysis 4.9 Binomial Method 4.10 Problems References 5 Robot Reliability 5.1 Introduction 5.2 Robot Failure Classifications, Causes, and Corrective Measures 5.3 Robot Reliability–Related Survey Results and Robot Effectiveness Dictating Factors 5.4 Robot Reliability Measures 5.4.1 Robot Reliability 5.4.2 Mean Time to Robot Failure (MTTRF) 5.4.3 Robot Hazard Rate 5.4.4 Mean Time to Robot Problems 5.5 Reliability Analysis of Electric and Hydraulic Robots 5.5.1 Reliability Analysis of the Electric Robot 5.5.2 Reliability Analysis of the Hydraulic Robot 5.6 Models for Performing Robot Reliability and Maintenance Studies 5.6.1 Model I 5.6.2 Model II 5.6.3 Model III 5.7 Problems References 6 Computer and Internet Reliability 6.1 Introduction 6.2 Computer Failure Causes and Issues in Computer System Reliability 6.3 Computer Failure Classifications, Hardware and Software Error Sources, and Computer Reliability Measures 6.4 Computer Hardware Reliability versus Software Reliability 6.5 Fault Masking 6.5.1 Triple Modular Redundancy (TMR) 6.5.1.1 TMR System Maximum Reliability with Perfect Voter 6.5.1.2 TMR System with Voter Time-Dependent Reliability and Mean Time to Failure 6.5.2 N-Modular Redundancy (NMR) 6.6 Software Reliability Assessment Methods 6.6.1 Classification I: Software Metrics 6.6.1.1 Design Phase Measure 6.6.1.2 Code and Unit Test Phase Measure 6.6.2 Classification II: Software Reliability Models 6.6.2.1 Mills Model 6.6.2.2 Musa Model 6.6.3 Classification III: Analytical Methods 6.7 Internet Facts, Figures, Failure Examples, and Reliability-Associated Observations 6.8 Internet Outage Categories and an Approach for Automating Fault Detection in Internet Services 6.9 Models for Performing Internet Reliability and Availability Analysis 6.9.1 Model I 6.9.2 Model II 6.10 Problems References 7 Transportation Systems Failures and Reliability Modeling 7.1 Introduction 7.2 Defects in Vehicle Parts and Classifications of Vehicle Failures 7.3 Mechanical Failure-Associated Aviation Accidents 7.4 Rail Defects and Weld Failures and Mechanical Failure-Associated Delays in Commuter Rail Service 7.5 Road and Rail Tanker Failure Modes and Failure Consequences 7.6 Ship-Related Failures and their Causes 7.7 Failures in Marine Environments and Microanalysis Techniques for Failure Investigation 7.7.1 Thermomechanical Analysis 7.7.2 Thermogravimetric Analysis 7.7.3 Differential Scanning Calorimetry 7.7.4 Fourier Transform Infrared Spectroscopy 7.8 Mathematical Models for Performing Reliability Analysis of Transportation Systems 7.8.1 Model I 7.8.2 Model II 7.8.3 Model III 7.8.4 Model IV 7.9 Problems References 8 Power System Reliability 8.1 Introduction 8.2 Power System Reliability-Related Terms and Definitions 8.3 Power System Service Performance Indices 8.3.1 Index I 8.3.2 Index II 8.3.3 Index III 8.3.4 Index IV 8.3.5 Index V 8.3.6 Index VI 8.4 Loss of Load Probability (LOLP) 8.5 Availability Analysis of a Single Power Generator Unit 8.5.1 Model I 8.5.2 Model II 8.5.3 Model III 8.6 Availability Analysis of Transmission and Associated Systems 8.6.1 Model I 8.6.2 Model II 8.7 Problems References 9 Medical Equipment Reliability 9.1 Introduction 9.2 Medical Equipment Reliability-Related Facts and Figures 9.3 Medical Devices and Medical Equipment/Devices Categories 9.4 Methods and Procedures for Improving Reliability of Medical Equipment 9.4.1 Parts Count Method 9.4.2 Failure Mode and Effect Analysis (FMEA) 9.4.3 General Approach 9.4.4 Fault Tree Analysis (FTA) 9.4.5 Markov Method 9.5 Human Error in Medical Equipment 9.5.1 Important Medical Equipment/Device Operator Errors 9.5.2 Medical Devices with High Incidence of Human Error 9.6 Medical Equipment Maintainability and Maintenance 9.6.1 Medical Equipment Maintainability 9.6.1.1 Reasons for Maintainability Principles’ Application 9.6.1.2 Maintainability Design Factors 9.6.1.3 Maintainability Measures 9.6.2 Medical Equipment Maintenance 9.6.2.1 Indices 9.6.2.2 Mathematical Models 9.6.2.2.1 Model 9.7 Sources for Obtaining Medical Equipment Reliability-Related Data 9.8 Useful Guidelines for Healthcare and Reliability Professionals for Improving Medical Equipment Reliability 9.9 Problems References 10 Mining Equipment Reliability 10.1 Introduction 10.2 Reasons for Improving Mining Equipment Reliability and Factors Impacting Mining System Reliability 10.3 Useful Reliability-Related Measures for Mining Equipment 10.4 Open-Pit System Reliability Analysis 10.4.1 Open-Pit Parallel System 10.4.2 Open-Pit Series System 10.5 Dump-Truck Tire Reliability and the Factors Affecting Their Life 10.6 Programmable Electronic Mining System Failures 10.6.1 Systematic Failures 10.6.2 Random Hardware Failures 10.7 Designing Reliable Conveyor Belt Systems and Methods of Measuring Winder Rope Degradation 10.7.1 Magnetic Nondestructive Testing Method 10.7.2 Visual Inspection Method 10.8 Typical Mining Equipment Maintenance Errors and Factors Contributing to Maintenance Errors 10.9 Useful Engineering Design-Related Improvement Guidelines for Reducing Mining Equipment Maintenance Errors 10.10 Problems References 11 Oil and Gas Industry Equipment Reliability 11.1 Introduction 11.2 Optical Connector Failures 11.3 Mechanical Seals’ Failures 11.3.1 Mechanical Seals’ Typical Failure Modes and Their Causes 11.4 Corrosion-Related Failures 11.4.1 Types of Corrosion or Degradation that Can Cause Failure 11.4.2 Corrosion/Condition Monitoring Methods 11.5 Fatigue Damage Initiation Assessment in Oil and Gas Steel Pipes 11.6 Oil and Gas Pipeline Fault Tree Analysis 11.7 Common Cause Failures Defense Approach for Oil and Gas Industry Safety Instrumented Systems 11.7.1 Common Cause Failures Defense Approach Task I: Scheduling Task II: Preparation, Execution, and Restoration Task III: Failure Reporting Task IV: Failure Analysis Task V: Implementation Task VI: Validation and Continuous Improvements 11.8 Problems References Index