دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Magdi S. Mahmoud, Yuanqing Xia سری: Emerging Methodologies and Applications in Modelling, Identification and Control ISBN (شابک) : 0128187018, 9780128187012 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 506 [498] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Cloud Control Systems: Analysis, Design and Estimation () به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های کنترل ابری: تجزیه و تحلیل، طراحی و تخمین () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cloud Control Systems: Analysis, Design and Estimation introduces readers to the basic definitions and various new developments in the growing field of cloud control systems (CCS). The book begins with an overview of cloud control systems (CCS) fundamentals, which will help beginners to better understand the depth and scope of the field. It then discusses current techniques and developments in CCS, including event-triggered cloud control, predictive cloud control, fault-tolerant and diagnosis cloud control, cloud estimation methods, and secure control/estimation under cyberattacks. This book benefits all researchers including professors, postgraduate students and engineers who are interested in modern control theory, robust control, multi-agents control.
Cover Cloud Control Systems: Analysis, Design and Estimation Copyright Contents Dedication About the authors Preface Acknowledgments 1 An overview 1.1 Preliminaries 1.1.1 Real-time distributed control systems 1.1.2 Synopsis of the security problem 1.2 Basics of cloud control systems 1.2.1 Cloud control security 1.2.2 Different types of cyber attacks 1.2.3 Passive versus active attacks 1.2.4 Fundamental requirements 1.2.5 Design consideration 1.3 A view on modeling cloud control systems 1.3.1 Development and activities 1.3.2 Architecture of cloud control systems 1.4 Notes 2 Cloud control systems venture 2.1 Introduction 2.1.1 Characteristics 2.1.2 Cloud control system venture 2.1.3 Security 2.2 Cloud control system security objectives 2.2.1 Confidentiality 2.2.2 Integrity 2.2.3 Availability 2.2.4 Reliability 2.2.5 Robustness 2.2.6 Trustworthiness 2.3 Types of attacks in cloud control system 2.3.1 Detection of cyber attacks 2.3.2 Bayesian detection with binary hypothesis 2.3.3 Weighted least-squares approaches 2.3.4 χ2 Detector based on Kalman filters 2.3.5 Fault detection and isolation techniques 2.4 Denial-of-service attacks 2.4.1 Approaches of modeling a denial-of-service attack 2.4.1.1 Queuing model 2.4.1.2 Stochastic model 2.4.2 Secure estimation approaches 2.4.3 Secure control approaches of denial-of-signal attack 2.4.3.1 Stochastic time delay system approach 2.4.3.2 Impulsive system approach, hybrid model 2.4.3.3 Small-gain approach 2.4.3.4 Triggering strategy 2.4.3.5 Game theory approach 2.4.4 Jamming attack 2.5 Deception attack 2.5.1 Modeling the deception attack 2.5.2 Secure estimation approaches of the deception attack 2.5.3 Secure control approaches of the deception attack 2.5.4 Replay attack 2.6 Notes 3 Distributed denial-of-service attacks 3.1 Introduction 3.2 Methods and tools 3.2.1 DDoS strategy 3.2.2 Types of DDoS attacks 3.3 Detection techniques against DDoS attacks 3.3.1 Literature review 3.3.2 Signature-based detection technique 3.3.3 Anomaly-based detection technique 3.3.4 Artificial neural network intrusion detection techniques 3.3.5 Genetic algorithm intrusion detection systems 3.4 Epilogue 3.5 Stabilization of distributed discrete systems 3.5.1 Introduction 3.5.2 Distributed cloud control system (DCCS) 3.5.3 Characteristics of the denial-of-service attacks 3.5.4 Nominal design results 3.5.5 A small-gain approach for distributed CPS 3.5.6 Stability analysis under denial-of-service attacks 3.5.7 Illustrative example 3.6 Notes 4 Distributed cloud control systems 4.1 Introduction and wireless control design challenge 4.2 Embedded virtual machines 4.2.1 Network CCS related work 4.2.2 Design flow of embedded virtual machines 4.2.3 Platform-independent domain-specific language 4.2.4 Control problem synthesis 4.3 EVM architecture 4.3.1 Embedded virtual machine extensions to the nano-RK RTOS 4.3.2 Virtual component interpreter 4.3.3 Virtual tasks 4.3.4 Virtual component manager 4.3.4.1 Virtual task handling (controlled by the VT handler) 4.3.4.1.1 VC state 4.3.4.1.2 VT migration and activation 4.3.4.1.3 Control of tasks executed on other nodes 4.3.4.1.4 VT assignment 4.3.4.2 Network management (performed by the network manager) 4.3.4.2.1 Transparent radio interface 4.3.4.2.2 Logical-to-physical address mapping 4.4 Virtual task assignment 4.4.1 General formulation 4.4.2 Problem relaxation 4.5 EVM runtime operation 4.5.1 Adaptation to planned and unplanned network changes 4.5.2 Communication schedulability analysis 4.5.3 Computation schedulability analysis 4.6 EVM implementation 4.6.1 EVM case study 4.6.2 Limitations of the EVM approach 4.7 Wireless control networks 4.7.1 An intuitive overview 4.7.2 Model development 4.8 Synthesis of an optimal wireless control network 4.8.1 Robustness to link failures 4.8.2 Wireless control networks with observer style updates 4.9 Robustness to node failure 4.10 Control of continuous-time plants 4.11 Process control application 4.11.1 Case description 4.11.2 Wireless control network experimental platform 4.11.3 Wireless control networks results 4.12 Notes 5 Secure stabilization of distributed systems 5.1 Introduction 5.2 Networked distributed system 5.2.1 Denial-of-service attacks-frequency and duration 5.3 Analytical results 5.3.1 A small-gain approach 5.3.2 Stabilization under denial of service 5.4 Approximation of resilience with reduced communication 5.4.1 Zeno-free event-triggered control 5.4.2 Hybrid transmission strategy under DoS 5.5 Simulation results 5.5.1 Simulation example 1 5.5.2 Simulation example 2 5.6 Notes 6 False data injection attacks 6.1 Related work 6.2 Kalman filter-based systems 6.2.1 Physical plant 6.2.2 Data buffer 6.2.3 Communication network 6.2.4 Control prediction generator 6.2.5 Network delay compensator 6.3 FDI attacks 6.3.1 Design results 6.4 Simulation results 6.4.1 Case 1: A and F are stable 6.4.2 Case 2: A is stable and F is unstable 6.4.3 Case 3: A is unstable and F is stable 6.5 Experimental results 6.5.1 Case 1: F is stable 6.5.2 Case 2: F is unstable 6.6 Notes 7 Stabilization schemes for secure control 7.1 Introduction and objectives 7.1.1 Process dynamics and ideal control action 7.1.2 DoS and actual control action 7.1.3 Control objectives 7.1.4 Stabilizing control update policies 7.2 Input-to-state stability under denial of service 7.2.1 Assumptions of time-constrained denial of service 7.2.2 Input-to-state stability under denial of service 7.2.3 Disturbance-free case 7.2.4 Resilient control logic 7.2.5 Periodic sampling logic 7.3 Event-based periodic sampling logic 7.3.1 Self-triggering sampling logic 7.3.2 Simulation examples and discussions 7.3.3 Numerical example 7.3.4 Slow-on-the-average DoS: disturbance-free case 7.4 Observer-based secure control 7.4.1 Problem formulation 7.4.2 Design results 7.4.3 Illustrative example I 7.5 Stabilization of discrete-time systems under DoS attack 7.5.1 Preliminaries 7.5.2 Discrete-time distributed system 7.5.3 Characteristics of the DoS attacks 7.5.4 Design results 7.5.5 The small-gain approach 7.5.6 Stability analysis under DoS attacks 7.5.7 Illustrative example II 7.6 Notes 8 Secure group consensus 8.1 Couple-group consensus conditions under denial-of-service attacks 8.1.1 Introduction 8.1.2 Algebraic graph theory 8.1.3 Consensus problem 8.1.4 Group consensus 8.1.5 Attack model 8.1.6 First-order group consensus under DoS attack 8.1.7 Simulation studies 8.2 Adaptive cluster consensus with unknown control coefficients 8.2.1 Introduction 8.2.2 Algebraic graph theory 8.2.3 Consensus 8.2.4 Group consensus 8.2.5 Single-integrator linear dynamics 8.2.6 Single integrator with nonlinear dynamics 8.2.7 Linear double-integrator dynamics 8.2.8 Nonlinear dynamics 8.2.9 Simulation studies 8.2.10 Single integrator with linear dynamics 8.2.11 Single integrator with nonlinear dynamics 8.2.12 Double integrator with linear dynamics 8.2.13 Double integrator with nonlinear dynamics 8.3 Notes 9 Cybersecurity for the electric power system 9.1 Problem description 9.2 Risk assessment methodology 9.2.1 Risk analysis 9.2.2 Risk mitigation 9.3 Power system control security 9.3.1 Model of microgrid system 9.3.2 Observation model and cyber attack 9.3.3 Cyber attack minimization in smart grids 9.3.4 Stabilizing feedback controller 9.4 Security of a smart grid infrastructure 9.4.1 Introduction 9.4.2 A cyber-physical approach to smart grid security 9.4.3 Cybersecurity approaches 9.4.4 System model 9.4.5 Cybersecurity requirements 9.4.6 Attack model 9.4.6.1 Attack entry points 9.4.6.2 Adversary actions Cyber consequences: Physical consequences: 9.4.7 Countermeasures 9.4.7.1 Key management 9.4.8 Secure communication architecture 9.4.9 System and device security 9.4.10 System-theoretic approaches 9.4.11 Security requirements 9.4.12 Attack model 9.4.13 Countermeasures 9.4.14 Bad data detection 9.4.15 The need for cyber-physical security 9.4.16 Defense against replay attacks 9.4.17 Cybersecurity investment 9.5 Notes 10 Resilient design under cyber attacks 10.1 Introduction 10.2 Problem statement 10.2.1 System model 10.2.2 Attack monitor 10.2.3 Switching the controller 10.2.4 Simulation results I 10.3 Secure control subject to stochastic attacks 10.3.1 Problem formulation and preliminaries 10.3.2 Design results 10.3.3 Simulation results II 10.4 Notes 11 Safety assurance under stealthy cyber attacks 11.1 Introduction 11.2 Cloud system model subject to cyber attacks 11.3 Stealthy deception attack design 11.3.1 Actuators are compromised 11.3.2 Sensors are compromised 11.3.3 Both actuators and sensors are compromised 11.3.4 Application to UAV navigation systems 11.4 Notes 12 A unified game approach under DoS attacks 12.1 Introduction 12.2 Problem description 12.2.1 Model of NCS subject to DoS attack 12.2.2 MTOC and CTOC design 12.2.3 Defense and attack atrategy design 12.3 MTOC and CTOC control strategies 12.4 Defense and attack strategies 12.4.1 Development of defense strategies 12.4.2 Development of attack strategies 12.5 Validation results 12.5.1 Building model description 12.5.2 Strategy design 12.5.3 Robust study 12.5.4 Comparative study 12.6 Experiment verification 12.7 Notes 13 Secure estimation subject to cyber stochastic attacks 13.1 Estimation against stochastic cyber attacks 13.1.1 Introduction 13.1.2 Problem formulation 13.1.3 Secure estimation design results 13.1.4 Illustrative example I 13.2 Resilience state estimation against integrity attacks 13.2.1 Introduction 13.2.2 System model 13.2.3 Attack model 13.2.4 Generic resilient estimator 13.2.5 Resilient estimator with L1-penalty 13.2.6 Resilience analysis 13.2.7 Necessary and sufficient conditions 13.2.8 Performance evaluation without attacks 13.2.9 Performance evaluation under attacks 13.2.10 Illustrative example II 13.3 Notes 14 Cloud-based approach in data centers 14.1 Preliminaries 14.1.1 A modeling approach 14.1.2 Architecture 14.1.3 Tier levels 14.2 Modeling and control for energy efficiency 14.2.1 Server level control 14.2.2 Group level control 14.2.3 Data center level control 14.3 A cloud control system model of data centers 14.3.1 Computational network 14.3.2 Thermal network 14.3.3 Control strategies 14.3.4 Baseline controller 14.3.5 Uncoordinated controller 14.3.6 Coordinated controller 14.3.7 Simulation results I 14.3.8 A cyber-physical index for data centers 14.4 Dynamic server provisioning 14.4.1 Zone level model 14.4.2 System dynamics 14.4.3 Performance model 14.4.4 Data center level model 14.4.5 Zone-level controller 14.4.6 Data center level controller 14.4.7 Simulation results II 14.5 Notes References Index Back Cover