دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: اندازه گیری ویرایش: نویسندگان: Lizhe Wang, Jining Yan, Yan Ma سری: ISBN (شابک) : 1138594563, 9781138594562 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 293 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 50 مگابایت
در صورت تبدیل فایل کتاب Cloud Computing in Remote Sensing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رایانش ابری در سنجش از راه دور نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب خدمات جمع آوری، پردازش، ذخیره سازی و تولید محصول سریع و آسان را در اختیار کاربران قرار می دهد. این کل چرخه زندگی داده های سنجش از دور را توصیف می کند و یک چارچوب سیستم پردازش داده های سنجش از دور با کارایی بالا ایجاد می کند. همچنین مجموعه ای از استانداردهای مدیریت و پردازش داده های سنجش از دور را توسعه می دهد. ویژگی ها: محاسبات ابری سنجش از دور را پوشش می دهد ادغام داده های سنجش از دور در مراکز داده توزیع شده را پوشش می دهد خدمات اشتراک داده سنجش از دور مبتنی بر ذخیره سازی ابری را پوشش می دهد پردازش داده های سنجش از دور با کارایی بالا را پوشش می دهد تجزیه و تحلیل محصولات سنجش از دور توزیع شده را پوشش می دهد.
This book provides the users with quick and easy data acquisition, processing, storage and product generation services. It describes the entire life cycle of remote sensing data and builds an entire high performance remote sensing data processing system framework. It also develops a series of remote sensing data management and processing standards. Features: Covers remote sensing cloud computing Covers remote sensing data integration across distributed data centers Covers cloud storage based remote sensing data share service Covers high performance remote sensing data processing Covers distributed remote sensing products analysis
Cover Half Title Title Page Copyright Page Contents Preface 1. Remote Sensing and Cloud Computing 1.1 Remote Sensing 1.1.1 Remote sensing definition 1.1.2 Remote sensing big data 1.1.3 Applications of remote sensing big data 1.1.4 Challenges of remote sensing big data 1.1.4.1 Data integration challenges 1.1.4.2 Data processing challenges 1.2 Cloud Computing 1.2.1 Cloud service models 1.2.2 Cloud deployment models 1.2.3 Security in the Cloud 1.2.4 Open-source Cloud frameworks 1.2.4.1 OpenStack 1.2.4.2 Apache CloudStack 1.2.4.3 OpenNebula 1.2.5 Big data in the Cloud 1.2.5.1 Big data management in the Cloud 1.2.5.2 Big data analytics in the Cloud 1.3 Cloud Computing in Remote Sensing 2. Remote Sensing Data Integration in a Cloud Computing Environment 2.1 Introduction 2.2 Background on Architectures for Remote Sensing Data Integration 2.2.1 Distributed integration of remote sensing data 2.2.2 OODT: a data integration framework 2.3 Distributed Integration of Multi-Source Remote Sensing Data 2.3.1 The ISO 19115-based metadata transformation 2.3.2 Distributed multi-source remote sensing data integration 2.4 Experiment and Analysis 2.5 Conclusions 3. Remote Sensing Data Organization and Management in a Cloud Computing Environment 3.1 Introduction 3.2 Preliminaries and Related Techniques 3.2.1 Spatial organization of remote sensing data 3.2.2 MapReduce and Hadoop 3.2.3 HBase 3.2.4 Elasticsearch 3.3 LSI Organization Model of Multi-Source Remote Sensing Data 3.4 Remote Sensing Big Data Management in a Parallel File System 3.4.1 Full-text index of multi-source remote sensing metadata 3.4.2 Distributed data retrieval 3.5 Remote Sensing Big Data Management in the Hadoop Ecosystem 3.5.1 Data organization and storage component 3.5.2 Data index and search component 3.6 Metadata Retrieval Experiments in a Parallel File System 3.6.1 LSI model-based metadata retrieval experiments in a parallel File system 3.6.2 Comparative experiments and analysis 3.6.2.1 Comparative experiments 3.6.2.2 Results analysis 3.7 Metadata Retrieval Experiments in the Hadoop Ecosystem 3.7.1 Time comparisons of storing metadata in HBase 3.7.2 Time comparisons of loading metadata from HBase to Elasticsearch 3.8 Conclusions 4. High Performance Remote Sensing Data Processing in a Cloud Computing Environment 4.1 Introduction 4.2 High Performance Computing for RS Big Data: State of the Art 4.2.1 Cluster computing for RS data processing 4.2.2 Cloud computing for RS data processing 4.2.2.1 Programming models for big data 4.2.2.2 Resource management and provisioning 4.3 Requirements and Challenges: RSCloud for RS Big Data 4.4 pipsCloud: High Performance Remote Sensing Clouds 4.4.1 The system architecture of pipsCloud 4.4.2 RS data management and sharing 4.4.2.1 HPGFS: distributed RS data storage with application aware data layouts and copies 4.4.2.2 RS metadata management with NoSQL database 4.4.2.3 RS data index with Hilbert R+tree 4.4.2.4 RS data subscription and distribution 4.4.3 VE-RS: RS-specific HPC environment as a service 4.4.3.1 On-demand HPC cluster platforms with bare-metal provisioning 4.4.3.2 Skeletal programming for RS big data processing 4.4.4 VS-RS: Cloud-enabled RS data processing system 4.4.4.1 Dynamic workflow processing for RS applications in the Cloud 4.5 Experiments and Discussion 4.6 Conclusions 5. Programming Technologies for High Performance Remote Sensing Data Processing in a Cloud Computing Environment 5.1 Introduction 5.2 Related Work 5.3 Problem Definition 5.3.1 Massive RS data 5.3.2 Parallel programmability 5.3.3 Data processing speed 5.4 Design and Implementation 5.4.1 Generic algorithm skeletons for remote sensing applications 5.4.1.1 Categories of remote sensing algorithms 5.4.1.2 Generic RS farm-pipeline skeleton 5.4.1.3 Generic RS image-wrapper skeleton 5.4.1.4 Generic feature abstract skeleton 5.4.2 Distributed RS data templates 5.4.2.1 RSData templates 5.4.2.2 Dist_RSData templates 5.5 Experiments and Discussion 5.6 Conclusions 6. Construction and Management of Remote Sensing Production Infrastructures across Multiple Satellite Data Centers 6.1 Introduction 6.2 Related Work 6.3 Infrastructures Overview 6.3.1 Target environment 6.3.2 MDCPS infrastructures overview 6.4 Design and Implementation 6.4.1 Data management 6.4.1.1 Spatial metadata management for co-processing 6.4.1.2 Distributed le management 6.4.2 Workflow management 6.4.2.1 Workflow construction 6.4.2.2 Task scheduling 6.4.2.3 Workflow fault-tolerance 6.5 Experiments 6.5.1 Related experiments on dynamic data management 6.5.2 Related experiments on workflow management 6.6 Discussion 6.6.1 System architecture 6.6.2 System feasibility 6.6.3 System scalability 6.7 Conclusions and Future Work 7. Remote Sensing Product Production in an OpenStack-Based Cloud Computing Environment 7.1 Introduction 7.2 Background and Related Work 7.2.1 Remote sensing products 7.2.1.1 Fine processing products 7.2.1.2 Inversion index products 7.2.1.3 Thematic products 7.2.2 Remote sensing production system 7.3 Cloud-Based Remote Sensing Production System 7.3.1 Program framework 7.3.2 System architecture 7.3.3 Knowledge base and inference rules 7.3.3.1 The upper and lower hierarchical relationship database 7.3.3.2 Input/output database of every kind of remote sensing product 7.3.3.3 Inference rules for production demand data selection 7.3.3.4 Inference rules for workflow organization 7.3.4 Business logic 7.3.5 Active service patterns 7.4 Experiment and Case Study 7.4.1 Global scale remote sensing production 7.4.2 Regional scale mosaic production 7.4.3 Local scale change detection 7.4.3.1 Remote sensing data cube 7.4.3.2 Local scale time-series production 7.5 Conclusions 8. Knowledge Discovery and Information Analysis from Remote Sensing Big Data 8.1 Introduction 8.2 Preliminaries and Related Work 8.2.1 Knowledge discovery categories 8.2.2 Knowledge discovery methods 8.2.3 Related work 8.3 Architecture Overview 8.3.1 Target data and environment 8.3.2 FRSDC architecture overview 8.4 Design and Implementation 8.4.1 Feature data cube 8.4.1.1 Spatial feature object in FRSDC 8.4.1.2 Data management 8.4.2 Distributed executed engine 8.5 Experiments 8.6 Conclusions 9. Automatic Construction of Cloud Computing Infrastructures in Remote Sensing 9.1 Introduction 9.2 Definition of the Remote Sensing Oriented Cloud Computing Infrastructure 9.2.1 Generally used cloud computing infrastructure 9.2.2 Remote sensing theme oriented cloud computing infrastructure 9.3 Design and Implementation of Remote Sensing Oriented Cloud Computing Infrastructure 9.3.1 System architecture design 9.3.2 System workflow design 9.3.3 System module design 9.4 Key Technologies of Remote Sensing Oriented Cloud Infrastructure Automatic Construction 9.4.1 Automatic deployment based on OpenStack and Salt-Stack 9.4.2 Resource monitoring based on Ganglia 9.5 Conclusions 10. Security Management in a Remote-Sensing-Oriented Cloud Computing Environment 10.1 Introduction 10.2 User Behavior Authentication Scheme 10.2.1 User behavior authentication set 10.2.2 User behavior authentication process 10.3 The Method for User Behavior Trust Level Prediction 10.3.1 Bayesian network model for user behavior trust prediction 10.3.2 The calculation method of user behavior prediction 10.3.2.1 Prior probability calculation of user behavior attribute level 10.3.2.2 Conditional probability of behavioral authentication set 10.3.2.3 Method of calculating behavioral trust level 10.3.3 User behavior trust level prediction example and analysis 10.4 Conclusions 11. A Cloud-Based Remote Sensing Information Service System Design and Implementation 11.1 Introduction 11.2 Remote Sensing Information Service Mode Design 11.2.1 Overall process of remote sensing information service mode 11.2.2 Service mode design of RSDaaS 11.2.3 Service mode design of RSDPaaS 11.2.4 Service mode design of RSPPaaS 11.2.5 Service mode design of RSCPaaS 11.3 Architecture Design 11.4 Functional Module Design 11.4.1 Function module design of RSDaaS 11.4.2 Function module design of RSDPaaS 11.4.3 Function module design of RSPPaaS 11.4.4 Function module design of RSCPaaS 11.5 Prototype System Design and Implementation 11.5.1 RSDaaS subsystem 11.5.2 RSDPaaS subsystem 11.5.3 RSPPaaS subsystem 11.5.4 RSCPaaS subsystem 11.6 Conclusions Bibliography Index