ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب CLINICAL FUNCTIONAL MRI presurgical functional neuroimaging.

دانلود کتاب تصویربرداری عصبی عملکردی پیش از جراحی MRI عملکردی بالینی.

CLINICAL FUNCTIONAL MRI presurgical functional neuroimaging.

مشخصات کتاب

CLINICAL FUNCTIONAL MRI presurgical functional neuroimaging.

ویرایش: 3 
 
سری:  
ISBN (شابک) : 9783030833435, 3030833437 
ناشر: SPRINGER NATURE 
سال نشر: 2021 
تعداد صفحات: 444 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 27 مگابایت 

قیمت کتاب (تومان) : 28,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب CLINICAL FUNCTIONAL MRI presurgical functional neuroimaging. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تصویربرداری عصبی عملکردی پیش از جراحی MRI عملکردی بالینی. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Foreword to the First Edition
Foreword to the Second Edition
Preface to the Third Edition
Contents
Presurgical Functional MRI and Diffusion Tensor Imaging
	1	 Introduction
	2	 Blood Oxygenation Level-Dependent Functional MRI (BOLD fMRI)
	3	 Diffusion Tensor Imaging (DTI) and DTI Tractography (DTT)
	4	 Presurgical fMRI and DTI
	5	 Content Overview
	References
Revealing Brain Activity and White Matter Structure Using Functional and Diffusion-Weighted Magnetic Resonance Imaging
	1	 Physical Principles of MRI
		1.1	 Spin Excitation and Signal Reception
		1.2	 Image Reconstruction
			1.2.1	 Selective Slice Excitation
			1.2.2	 Frequency Encoding
			1.2.3	 Phase Encoding
			1.2.4	 Two-Dimensional k Space
			1.2.5	 Echo Planar Imaging
			1.2.6	 Parallel Imaging and Parallel Excitation
	2	 Physiological Principles of fMRI
		2.1	 Neurovascular Coupling
		2.2	 The BOLD Effect
		2.3	 The Hemodynamic Response
		2.4	 Limits of Spatial and Temporal Resolution
	3	 fMRI Data Analysis
		3.1	 Block and Event-Related Designs
		3.2	 Data Preprocessing
			3.2.1	 Two Views on fMRI Datasets
			3.2.2	 Preprocessing of Functional Data
				3.2.2.1 Distortion Correction of Functional Images
				3.2.2.2 Detection and Correction of Head Motion
				3.2.2.3 Slice Scan Time Correction
				3.2.2.4 Removal of Drifts and Temporal Smoothing of Voxel Time Series
				3.2.2.5 Spatial Smoothing
				3.2.2.6 Mean Intensity Adjustment
				3.2.2.7 Motion Correction Within and Across Runs
		3.3	 Statistical Analysis of Functional Data
			3.3.1	 From Image Subtraction to Statistical Comparison
			3.3.2	 T-Test and Correlation Analysis
			3.3.3	 The General Linear Model
				3.3.3.1 GLM Diagnostics
				3.3.3.2 GLM Significance Tests
				3.3.3.3 Conjunction Analysis
				3.3.3.4 Multicollinear Design Matrices
				3.3.3.5 GLM Assumptions
				3.3.3.6 Correction for Serial Correlations
			3.3.4	 Creation of Statistical Maps
			3.3.5	 The Multiple Comparison Problem
			3.3.6	 Event-Related Averaging
			3.3.7	 Deconvolution Analysis
		3.4	 Integration of Anatomical and Functional Data
			3.4.1	 Visualizing Statistical Maps on Anatomical Images
			3.4.2	 Coregistration of Functional and Anatomical Datasets
			3.4.3	 Visualizing Statistical Maps on Reconstructed Cortex Representations
		3.5	 Group Analysis of Functional Datasets
			3.5.1	 Talairach Transformation
			3.5.2	 Cortex-Based Normalization
			3.5.3	 Correspondence Based on Functional Localizer Experiments
			3.5.4	 Statistical Analysis of Group Data
		3.6	 Selected Advanced Data Analysis Methods
			3.6.1	 Nonparametric Statistical Approaches
			3.6.2	 Bayesian Statistics
			3.6.3	 Brain Normalization
			3.6.4	 Data-Driven Analysis Methods
			3.6.5	 Multivariate Analysis of Distributed Activity Patterns
			3.6.6	 Real-Time Analysis of fMRI Data
	4	 Functional Connectivity and Resting-State Networks
		4.1	 Functional and Effective Connectivity
		4.2	 Resting-State Networks
	5	 Diffusion-Weighted MRI and Tractography
		5.1	 Diffusion Tensor Imaging
			5.1.1	 Tractography: From Tensors to Fiber Bundles
		5.2	 Validation and Improvements
		5.3	 Applications
			5.3.1	 The Human Connectome
	References
Functional Neuroanatomy
	1	 Introduction
	2	 Surface Anatomy
		2.1	 Convexity Surface
			2.1.1	 Sylvian Fissure
			2.1.2	 Frontal Lobe
			2.1.3	 Temporal Lobe
			2.1.4	 Parietal Lobe
			2.1.5	 Occipital Lobe
			2.1.6	 Insula
		2.2	 Inferior Surface
			2.2.1	 The Frontal Lobe
			2.2.2	 The Temporo-Occipital Lobes
		2.3	 Superior Surface of the Temporal Lobe
		2.4	 Medial Surface
	3	 Lobar Borders
	4	 Localizing Anatomic Sites Independent of Lobar Anatomy
		4.1	 Talairach-Tournoux Coordinate System and “Talairach Space”
	5	 Identification of Specific Anatomic Structures
		5.1	 The Pericentral Cortex
			5.1.1	 Functional Methods
			5.1.2	 Anatomical Methods
		5.2	 The Superior Temporal Plane
		5.3	 The Occipital Lobe
	6	 Cortical Architecture
		6.1	 Cytoarchitectonics
		6.2	 Somatotopy
		6.3	 Selected Areas Involved in Motor and Speech Function
			6.3.1	 Primary Motor Cortex (M1)
			6.3.2	 Supplementary Motor Area (SMA)
			6.3.3	 Pre-supplementary Motor Area (Pre-SMA)
			6.3.4	 Cingulate Motor Area (CMA)
			6.3.5	 Premotor Area
			6.3.6	 Prefrontal Cortex (Pre-FC)
			6.3.7	 Broca’s Area
			6.3.8	 Dronkers’ Area
			6.3.9	 Sensory Appreciation of Speech
			6.3.10	 Interconnection of Speech Areas: Arcuate Fasciculus
	7	 Conclusion
	References
Task-Based Presurgical Functional MRI in Patients with Brain Tumors
	1	 Brain Tumors and Brain Tumor Surgery
	2	 Presurgical Functional Neuroimaging: Rationale and Diagnostic Aims
	3	 Presurgical Task-Based fMRI: Practical, Technical, and Methodological Considerations
		3.1	 Practical Issues
		3.2	 Legal Aspects
		3.3	 Evaluation of Presurgical fMRI Data
		3.4	 Analyzing fMRI Data in Individual Patients
	4	 Presurgical fMRI of Motor and Somatosensory Function
		4.1	 Review of Literature
		4.2	 Selection of Candidates for Presurgical Motor and Somatosensory fMRI
		4.3	 Motor and Somatosensory Paradigms for Presurgical fMRI
		4.4	 Presurgical Somatotopic Mapping of the Primary Motor Cortex
		4.5	 Presurgical Somatotopic Mapping of the Primary Somatosensory Cortex
		4.6	 Localization of the Precentral Gyrus in Patients with Preexisting Paresis
	5	 Presurgical fMRI of Language Function
		5.1	 Review of Literature
		5.2	 Special Practical Issues in Presurgical fMRI of Language Function
		5.3	 Selection of Candidates for Presurgical Language fMRI
		5.4	 Language Paradigms for Presurgical fMRI
		5.5	 Presurgical fMRI of Language Function
	6	 Diagnostic Capabilities and Limitations of Presurgical Task-Based fMRI
	References
Presurgical Resting-State fMRI
	1	 Introduction
		1.1	 Background
		1.2	 Resting-State Networks
	2	 Methods
		2.1	 Data Acquisition
		2.2	 Overview of Processing Methods
		2.3	 General Preprocessing
		2.4	 Preprocessing in Preparation for Seed-Based Correlation Mapping
		2.5	 Global Signal Regression
		2.6	 Seed-Based Correlation Mapping
		2.7	 Independent Component Analysis
		2.8	 RSN Mapping Using Machine Learning Methods
			2.8.1	 Multilayer Perceptron
			2.8.2	 Deep Learning
	3	 Application to Pre-surgical Planning
		3.1	 Introduction
		3.2	 Prior Studies: Motor System
		3.3	 Prior Studies: Language System
		3.4	 Prior Studies: Comparison with Cortical Stimulation Mapping
		3.5	 Prior Studies: General
		3.6	 Clinical Cases
			3.6.1	 Case 1
			3.6.2	 Case 2
			3.6.3	 Case 3
	4	 Conclusion
	References
Simultaneous EEG-fMRI in Epilepsy
	1	 Introduction
	2	 Data Acquisition and Analysis
		2.1	 The Technology
		2.2	 Patient Safety
		2.3	 Technical Equipment
		2.4	 Artifacts in EEG Data
		2.5	 Artifacts in fMRI Data
		2.6	 Recording Procedure
		2.7	 Modeling the Hemodynamic Response
		2.8	 Spike-Based Evaluation
		2.9	 ICA-Based Evaluation
		2.10	 Evaluation Based on Artificial Intelligence
		2.11	 Connectivity-Based Evaluation
	3	 Clinical Applications
		3.1	 Simultaneous EEG-fMRI in Genetic Generalized Epilepsy Syndromes
		3.2	 Simultaneous EEG-fMRI in the Preoperative Workup of Pharmacoresistant Focal Epilepsies
		3.3	 Connectivity Analyses
	4	 Future Directions
	5	 Conclusions
	References
Diffusion Imaging with MR Tractography for Brain Tumor Surgery
	1	 Introduction
	2	 Neuro-Oncology of Gliomas
		2.1	 Histology and Molecular Markers
		2.2	 Pattern of Growth and Velocity of Expansion
		2.3	 Aims of Brain Tumor Surgery
	3	 Magnetic Resonance Diffusion Imaging Methods
		3.1	 Conventional MR Imaging
		3.2	 Diffusion Tensor Imaging
		3.3	 DTI Metrics and Brain Tumor Microstructure
		3.4	 MR Tractography
		3.5	 Limitations of DTI and MR Tractography
		3.6	 Crossing Fibers and the Need for Advanced MR Diffusion Imaging Methods
		3.7	 Clinically Feasible Brain Mapping Imaging Protocols and Pre-processing Requirements
	4	 Functional Systems of the Brain and the Connectome
		4.1	 The Motor System
		4.2	 The Language System
		4.3	 The Visuospatial Attention System
		4.4	 The Connectome
	5	 Mapping WM Tracts for Brain Surgery
		5.1	 Brain Tumor Semeiotic of FA and Directionally Encoded Color Maps
		5.2	 Mapping Strategies with MR Tractography
		5.3	 Motor System
			5.3.1	 Corticospinal Tract
			5.3.2	 SMA Connectivity
		5.4	 Language System
			5.4.1	 The Dorsal Pathway: Arcuate Fasciculus
			5.4.2	 The Ventral Pathway: IFOF, UF, and ILF
			5.4.3	 Frontal Aslant Tract and Subcallosal Fasciculus
			5.4.4	 Which Fascicles Are Eloquent for Speech?
		5.5	 Visuospatial System: OR
			5.5.1	 Superior Longitudinal Fasciculus
		5.6	 The Temporo-Parietal Fiber Intersection Area
		5.7	 Integration with fMRI
		5.8	 Integration in the Operating Room
		5.9	 Impact in Clinical Practice
	6	 Conclusions
	References
Functional Neuronavigation
	1	 Introduction
	2	 Principles and Technical Aspects of Neuronavigation and Stereotaxy
		2.1	 Neuronavigation
		2.2	 Stereotaxy
		2.3	 Intraoperative Imaging
	3	 Aims and Indications for Functional Neuronavigation
	4	 Applications of Functional Neuronavigation
		4.1	 Motor and Sensory Systems
		4.2	 Language
		4.3	 Visual Cortex
		4.4	 Auditory Cortex
		4.5	 Pain
		4.6	 Psychological Function, Memory
		4.7	 Resting-State fMRI
		4.8	 Diffusion Tensor Imaging (DTI)
		4.9	 Implementation of Functional Imaging Data into Intraoperative Imaging
		4.10	 Implementation of Functional Imaging Data into Intraoperative Mapping
		4.11	 Cost-Effectiveness
	5	 Perspectives
		5.1	 Single-Rack Solution
		5.2	 Overlay of Functional Imaging Data in the Operation Microscope or Exoscope
		5.3	 Imaging the Basal Ganglia
		5.4	 Neuroplasticity
		5.5	 Imaging the Spinal Cord
		5.6	 Molecular Imaging
	6	 Summary
	References
Presurgical Functional Localization Possibilities, Limitations, and Validity
	1	 Possibilities and Limitations of Functional Brain Mapping
		1.1	 Spatial Localization of BOLD Signal
			1.1.1	 Spatial Specificity of Deoxyhemoglobin-Based (BOLD fMRI) Methods
			1.1.2	 The Type of Sequence: Spin Echo (T2) Versus Gradient Echo (T2*) BOLD fMRI
				1.1.2.1 The Intra- and Extravascular Components of BOLD Signal
				1.1.2.2 Specificity of Spin Echo (T2) Versus Gradient Echo (T2*) BOLD
				1.1.2.3 Field Dependence of BOLD Signal
		1.2	 fMRI Artifacts and Limitations
			1.2.1	 Movement Artifacts
			1.2.2	 Magnetic Susceptibility Artifacts
			1.2.3	 BOLD Response Alterations Induced by the Lesion
			1.2.4	 Effect of Subject Task Performance and Statistical Threshold
			1.2.5	 Alternatives to Task-Based fMRI
	2	 Validation of Presurgical Mapping Using Established Reference Procedures
		2.1	 Direct Electrical Stimulations
			2.1.1	 Basic Principles
			2.1.2	 Risks Associated with DES
			2.1.3	 Practical Stimulation Methods
			2.1.4	 Neuropsychological Evaluation
			2.1.5	 Co-registration with Functional Imaging Data
			2.1.6	 Limitations of Functional and DES Comparison
		2.2	 Intracarotid Amobarbital Procedure (IAP) or Wada Test
			2.2.1	 Methods
			2.2.2	 Risks and Limitations of the Wada Test
			2.2.3	 Validation of the Wada Test
	3	 Important Results of Validation Studies in Brain Tumors and Epilepsies, Overview, and Current State
		3.1	 Motor Function
			3.1.1	 Functional Mapping
				3.1.1.1 fMRI vs. DES
				3.1.1.2 fMRI vs. TMS
				3.1.1.3 fMRI vs. PET
				3.1.1.4 TMS vs. DES/fMRI
				3.1.1.5 fMRI vs. MSI
			3.1.2	 DTI Fiber Tracking of the Corticospinal Tract
		3.2	 Language Function
			3.2.1	 Hemispheric Dominance for Language
			3.2.2	 Localization of Language Areas
			3.2.3	 DTI Fiber Tracking of Language Tracts
		3.3	 Memory Functions
	4	 Conclusion
	References
Multimodal Functional Neuroimaging
	1	 Introduction to Multimodal Functional Neuroimaging
	2	 Multimodal Neuroimaging for Pre-surgical Planning
		2.1	 Multiparametric MRI Techniques
			2.1.1	 Volumetric Analysis of Structural MRI
			2.1.2	 Perfusion MRI (pMRI)
			2.1.3	 Diffusion Tensor Imaging (DTI)
			2.1.4	 Functional MRI (fMRI)
			2.1.5	 Resting State Functional MRI (rs-fMRI)
			2.1.6	 MR Spectroscopy (MRS)
		2.2	 Combined MRI and Nuclear Medicine
		2.3	 Combined MRI and MEG (MSI)/EEG
	3	 Advantages and Limitations of Multimodal Functional Neuroimaging
	References
Brain Plasticity in fMRI and DTI
	1	 Introduction
	2	 What Are the Clinical Benefits of Neuroplasticity Investigations?
		2.1	 Better Evaluation of the Patients’ Functional State
		2.2	 Better Individual Prognosis
		2.3	 Improvement of Treatment Strategies
		2.4	 Progress in Understanding How the Nervous System Acts in Response to Disease
	3	 Mechanisms of Neuroplasticity
		3.1	 Molecular Changes
		3.2	 Cellular Changes
		3.3	 Neuronal Population Changes
	4	 Review of the Clinical Literature on fMRI and DTI
		4.1	 Stroke
			4.1.1	 Local Brain Activation Changes
			4.1.2	 Network Changes
		4.2	 Epilepsy
		4.3	 Tumour
		4.4	 Multiple Sclerosis (MS)
		4.5	 Peripheral Nervous System Disorders
	5	 Novel Brain Stimulation Supported by fMRI/DTI
	References
Clinical BOLD fMRI and DTI: Artifacts, Tips, and Tricks
	1	 Introduction
	2	 Artifacts Related to BOLD fMRI Signal in Both Active and Resting State fMRI
		2.1	 Artifacts in Localization of Brain Activity (Brain or Vein)
			2.1.1	 How to Minimize the Contribution of Draining Veins?
		2.2	 The Influence of Brain Lesions on the BOLD fMRI Signal
			2.2.1	 Absent or Reduced BOLD Signal
			2.2.2	 Case of a Patient Showing an Inverted BOLD Signal Change
			2.2.3	 BOLD-Signal in Contrast Enhancing Parts of Brain Malignancies
			2.2.4	 BOLD-Signal in Patients with Brain AVMs
		2.3	 The Effect of Different Pharmaceuticals on the BOLD fMRI Signal
			2.3.1	 Caffeine
			2.3.2	 Alcohol
			2.3.3	 Other Chemicals
			2.3.4	 CO2
	3	 The Influence of Brain Lesions on DTI Results
	4	 Patient-Related Artifacts and Physiological Noise
		4.1	 Flow and Pulsation Artifacts
		4.2	 Artifacts from Bulk Head Motion
			4.2.1	 Minimizing and Correcting for Motion
			4.2.2	 How to Distinguish Real Activation from Motion Induced False Activation
		4.3	 Motion Artifacts in DTI
		4.4	 Patient Cooperation
	5	 Technology Related Artifacts
		5.1	 Susceptibility Artifacts in BOLD fMRI and DTI
			5.1.1	 Methods to Decrease Susceptibility-Related Artifacts
		5.2	 Multiband Artifacts
		5.3	 Sensitivity of EPI Sequences to Spikes
		5.4	 Eddy Current-Induced Distortions in DTI
	6	 Statistical Post-processing “Artifacts”
	References




نظرات کاربران