دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Conxi Lázaro, Jordan Lerner-Ellis, Amanda Spurdle سری: Translational and Applied Genomics ISBN (شابک) : 0128205199, 9780128205198 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 436 [411] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 Mb
در صورت تبدیل فایل کتاب Clinical DNA Variant Interpretation: Theory and Practice به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تفسیر متفاوت DNA بالینی: تئوری و عمل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تفسیر نوع DNA بالینی: تئوری و عمل، جلد جدیدی از سری ژنومیکس ترجمهای و کاربردی، جنبههای اساسی، روشهای تجزیه و تحلیل، فناوری، مطالعات موردی خاص بیماری و اختلال، و ادغام بالینی را پوشش میدهد. این کتاب یک پسزمینه نظری عمیق و همچنین مطالعات موردی کاربردی و روششناسی ارائه میدهد و محققان، پزشکان و ارائهدهندگان مراقبتهای بهداشتی را قادر میسازد تا به طور موثر انواع DNA مرتبط با بیماری و فنوتیپهای بیمار را طبقهبندی کنند. فصلهای عملی تفسیر گونههای ژنومی، اصطلاحات و نامگذاری، دستورالعملهای اجماع بینالمللی، فراوانی آلل جمعیت، رونوشتهای شواهد عملکردی برای RNA، پروتئینها و آنزیمها، جهشهای سوماتیک، پروفایلهای سوماتیک و موارد دیگر را مورد بحث قرار میدهند.
Clinical DNA Variant Interpretation: Theory and Practice, a new volume in the Translational and Applied Genomics series, covers foundational aspects, modes of analysis, technology, disease and disorder specific case studies, and clinical integration. This book provides a deep theoretical background, as well as applied case studies and methodology, enabling researchers, clinicians and healthcare providers to effectively classify DNA variants associated with disease and patient phenotypes. Practical chapters discuss genomic variant interpretation, terminology and nomenclature, international consensus guidelines, population allele frequency, functional evidence transcripts for RNA, proteins, and enzymes, somatic mutations, somatic profiling, and much more.
Front-Matter_2021_Clinical-DNA-Variant-Interpretation Clinical DNA Variant Interpretation: Theory and Practice Copyright_2021_Clinical-DNA-Variant-Interpretation Copyright Dedication_2021_Clinical-DNA-Variant-Interpretation Dedication Conxi Lázaro Jordan Lerner-Ellis Amanda Spurdle Contributors_2021_Clinical-DNA-Variant-Interpretation Contributors Foreword--the-challenge-of-variant-interp_2021_Clinical-DNA-Variant-Interpre Foreword: the challenge of variant interpretation About-the-editors_2021_Clinical-DNA-Variant-Interpretation About the editors Chapter-1---Introduction--the-challenge-of-geno_2021_Clinical-DNA-Variant-In 1 . Introduction: the challenge of genomic DNA interpretation Chapter-2---General-considerations--terminolo_2021_Clinical-DNA-Variant-Inte 2 . General considerations: terminology and standards Introduction Genetic variation Types of DNA sequence changes Types of RNA sequence changes Types of protein sequence changes Variant consequences by location Promoter region 5′ untranslated region Start codon Protein-coding region Splice region, splice sites, and introns Stop codon 3′ untranslated region and the polyadenylation signal Other variation Standards on describing genetic variation Gene symbols Reference sequences Describing variants The Variant Call Format The Human Genome Variation Society nomenclature Variant classification Functional classification Clinical classification Standards on reporting disorders and phenotypes Challenges and considerations Conclusions References Chapter-3---International-consensus-guidelines-for-c_2021_Clinical-DNA-Varia 3 . International consensus guidelines for constitutional sequence variant interpretation Historical variant interpretation approaches Current variant classification practices: the 2015 ACMG/AMP guideline for sequence variant interpretation Background and scope Variant classification terminology Evidence criteria and application Variant classification and case interpretation Ongoing and future adaptations of the ACMG/AMP guidelines Specifications from ClinGen: the clinical genome resource Gene-specific versus general criteria Qualitative versus quantitative/Bayesian approaches Summary References Chapter-4---Quantitative-modeling--multifactori_2021_Clinical-DNA-Variant-In 4 . Quantitative modeling: multifactorial integration of data Overview of quantitative modeling for variant interpretation Derivation of likelihood ratios Proportions of categorical data Likelihood ratios for complex categorical data Calibration of continuous variables Combining likelihood ratios Components of quantitative models Prior probability of pathogenicity Bioinformatic predictions Cosegregation Functional assays Complete in vitro mismatch repair activity assay TP53 assays BRCA1/2 assays Personal and family history BRCA1/2 TP53 Tumor characteristics MMR tumor characteristics BRCA1/2 breast cancer histopathology TP53 breast cancer histopathology TP53 somatic/germ line ratio Co-occurrence with a pathogenic variant Population-based data Population frequency Healthy adult individuals Case–control data Caveats and considerations References Chapter-5---Clinical-and-genetic-evidence-and-_2021_Clinical-DNA-Variant-Int 5 . Clinical and genetic evidence and population evidence Introduction Phenotype description Medical pedigree Population genetic resources Fitness—reproductive success Hardy–Weinberg equilibrium Population ethnic background Prevalence of disease Expected variant frequency Ascertainment Ascertainment bias Ascertainment of “healthy” individuals Ascertainment of individuals with disease Matched controls in genetics studies Population allele frequency Allele frequency thresholds MAF thresholds Thresholds used for benign evidence criteria Thresholds used for pathogenic evidence criteria Population size Family history Inheritance patterns Autosomal dominant (AD) Autosomal recessive X-linked recessive X-linked dominant Y-linked Mitochondrial Inheritance Inheritance analysis Cosegregation Cosegregation phenotyping Cosegregation limitations Molecular pathology Hereditary cancer predisposition Tumor first sequencing Molecular pathology markers in hereditary colorectal cancers Molecular pathology markers in hereditary breast and ovarian cancer Molecular pathology markers in congenital disorders Molecular pathology markers in newborn screening Mosaicism Somatic versus germ line mosaicism Testing strategies in mosaicism Identification of mosaicism using next-generation sequencing Mosaic presentations Example 1: mosaic neurofibromatosis Example 2: mosaic polycystic kidney disease Example 3: Li–Fraumeni syndrome Conclusion References Further reading Chapter-6---The-computational-approach-to-variant-int_2021_Clinical-DNA-Vari 6 . The computational approach to variant interpretation: principles, results, and applicability Pathogenicity predictors for amino acid sequence variants The molecular impact of amino acid variants: a biophysical view Protein stability changes upon mutation The effect of variants on protein interactions The applicability of biophysical models Bioinformatic pathogenicity predictors: principles and present situation Development of a bioinformatic predictor Training datasets The discriminant features The classifier The validation process The validation process The performance of bioinformatic pathogenicity predictors The variability of performance estimates Future developments and challenges Computational predictors for variants affecting splicing RNA splicing factors Mis-RNA splicing and disease Bioinformatic approaches to predict variant effect on splicing Future developments and challenges Acknowledgments References Chapter-7---Functional-evidence--I--transcripts-_2021_Clinical-DNA-Variant-I 7 . Functional evidence (I) transcripts and RNA-splicing outline Introduction Splicing, alternative splicing events, and splicing isoforms: the splicing profile “Reference” transcript Spliceogenic variants overlap cis-acting determinants of alternative splicing: short sequence motifs and long-range sequenc ... Trans-acting and epigenetic determinants of alternative splicing Roles of alternative splicing Alternative splicing profile is dynamic Spliceogenic variants: alternative splicing informs on the prior probability of being pathogenic Splicing analyses: determining the spliceogenic impact of a genetic variant Conclusion References Chapter-8---Functional-evidence--II--protein-a_2021_Clinical-DNA-Variant-Int 8 . Functional evidence (II) protein and enzyme function Historical background The challenge of variants of uncertain significance Assessment of variant pathogenicity Prediction of variant effects: in silico tools Functional assays Validation and calibration Example: BRCA1 and BRCA2 Example: DNA mismatch repair genes Example: BLM Example: RHO Example: CFTR High-throughput assays In vivo assays Conclusion Conflict of interest statement References Chapter-9---Somatic-data-usage-for-classificati_2021_Clinical-DNA-Variant-In 9 . Somatic data usage for classification of germ line variants Introduction Data sources Somatic data resources Other databases with limited somatic data Control database for comparison Laboratory practices utilizing somatic data Principles and rationale for utilizing somatic data for classifying germ line variants in cancer predisposition genes Loss of heterozygosity, determining biallelic inactivation, and cancer hot spots Loss of heterozygosity Copy-neutral LOH Determining biallelic inactivation Mutational hot spots RNA-seq tumor data Tumor signatures Germ line risk and variant pathogenicity informed from tumor signatures Breast cancer CHEK2 variants Other considerations for integrating germ line and somatic data Biomarker considerations (immunohistochemistry and hormone status) Determining pathogenicity of alleles in genes with recessive and dominant phenotypes integrating population, somatic, and g ... Recognizing clonal evolution and specific somatic mutations in the context of predisposition Leukemia predisposition genes Identifying candidate predisposition genes References Chapter-10---Pharmacogenetics-and-personali_2021_Clinical-DNA-Variant-Interp 10 . Pharmacogenetics and personalized medicine Introduction to pharmacogenetics and personalized medicine Variant nomenclature in pharmacogenetics Star allele nomenclature HLA nomenclature Other pharmacogenetic nomenclatures Technologies for pharmacogenetic testing Databases/resources for pharmacogenetics PharmGKB PharmVar Clinical guidelines and decision support tools in pharmacogenetics Clinical guidelines from PGx consortia Clinical annotation tools Complete PGx annotation tools CYP2D6 annotation software Pharmacogenetics examples in clinical practice Psychiatry: carbamazepine/oxcarbazepine and HLA-A/B Cardiology: clopidogrel and CYP2C19 Oncology: fluoropyrimidines and DPYD Gastroenterology: thiopurines and TPMT/NUDT15 Organ transplant: tacrolimus and CYP3A5 Pain relief: codeine and CYP2D6 Antiretroviral therapy: abacavir and HLA-B Implementation of pharmacogenetic testing in clinical practice Future perspectives of personalized medicine References Chapter-11---Data-sharing-and-gene-variant_2021_Clinical-DNA-Variant-Interpr 11 . Data sharing and gene variant databases Introduction General databases Focused databases HGMD ClinVar and GV shared LOVD ClinVar Global Variome shared LOVD Other databases Final considerations References Internet resources Chapter-12---Approaches-to-the-comprehensive-inter_2021_Clinical-DNA-Variant 12 . Approaches to the comprehensive interpretation of genome-scale sequencing Clinical applications of GS Diagnostics Screening Research applications of GS Analysis of GS results for various applications Variant annotation and filtration Basic gene and variant-level data Population frequency data Publication data and phenotype associations Inheritance patterns Filtration approaches using available annotations Criteria used for returning results of GS Return of diagnostic findings in GS Return of secondary and screening findings in GS Findings related to risk for Mendelian disease risk Predictive capacity for disease risk Medical actionability Age of the patient population Patient preferences Other types of findings Carrier status for recessive disease Pharmacogenetic variants Variants with low penetrance that may be considered as risk factors Conclusion References Chapter-13---Phenotype-evaluation-and-clinical-context-_2021_Clinical-DNA-Va 13 . Phenotype evaluation and clinical context: application of case-level data in genomic variant interpretation Introduction Genetic testing in clinical practice History of clinical genetics services The role of the clinical geneticist The purposes of genetic consultations and genomic testing The evolving knowledgebase underpinning clinical diagnostic testing Technological advances Understanding the genomic architecture of disease Large-scale data generation Evolution in clinical diagnostic variant interpretation Historic empirical disease-based interpretation International coordination in variant data sharing Emergence of international frameworks Application of clinical and phenotypic information to variant interpretation and classification Sources of clinical data Contribution of the patient under investigation Cases from clinical networks Publicly available clinical evidence Scientific literature Repositories of variant information and locus-specific databases Phenotype assessment Incorporation of clinical data in variant interpretation Reliability and robustness of phenotypic data under evaluation Completeness of the available information and active inclusion/exclusion of clinical features Presence of other valid explanations for the clinical features observed in the proband Absence of classical high-sensitivity features in the proband(s) Specificity of the observed phenotypic feature(s) for the genetic form of disease Genetic heterogeneity: number of genes associated with the genetic form of the disease Frequency information in genes with rare variation in the general population Composition of the type of established pathogenic variation within a gene Frequency of variation observed in cases with disease compared to the control population Mode of inheritance and segregation of disease Management of the patient based on the genomic data Genomic findings of uncertain significance The “negative” genetic result: when no causative variants are found Management for a pathogenic variant Individualized risk estimation General risk estimates Contextualizing risk estimation based on pattern of disease and family history Hypomorphic variants Moderate risk genes Other genetic factors Oligogenic modifier variants Polygenic modifiers Nongenetic factors Individualizing patient management based on genomic information Conclusions References Chapter-14---Inherited-cardiomyopathi_2021_Clinical-DNA-Variant-Interpretati 14 . Inherited cardiomyopathies Introduction Inherited heart diseases Inherited cardiomyopathies Hypertrophic cardiomyopathy Dilated cardiomyopathy Arrhythmogenic cardiomyopathy Other cardiomyopathies Restrictive cardiomyopathy The role of genetic testing in cardiomyopathies Value of genetic testing in cardiomyopathies Identification of at-risk relatives and targeting of clinical screening Emerging gene-directed treatments Common issues in interpreting cardiomyopathy variants Incomplete penetrance, age- and sex-related penetrance, and additional genetic variants Case 1: Lack of segregation in family Incomplete phenotype information or variable expression Case 2: variable expression Insufficient evidence for variant pathogenicity Case 3: insufficient variant information Future directions Improved phenotyping, experimental evidence, and functional data for genetic variants Tackling secondary findings of cardiac variants Increased genetic screening of cardiac patients Summary Acknowledgment References Chapter-15---Phenylketonuria_2021_Clinical-DNA-Variant-Interpretation 15 . Phenylketonuria Introduction History of phenylketonuria Clinical features Clinical symptoms Newborn screening Diagnosis Classification of PKU Incidence of PKU Genetic counseling Management Maternal PKU Evolution of genotyping Practical genotype–phenotype correlation Case 1 Case 2 Case 3 References Chapter-16---Hearing-loss_2021_Clinical-DNA-Variant-Interpretation 16 . Hearing loss Introduction Genetic tests for hearing loss Disease sections: practical examples that highlight the main challenges of the molecular diagnosis of hearing loss Apparent non-syndromic hearing loss Large families with more than one gene involved The importance of molecular karyotyping in the analysis of hearing loss Cases negative for known deafness genes: what to do? Conclusions References Chapter-17---Familial-hypercholesterole_2021_Clinical-DNA-Variant-Interpreta 17 . Familial hypercholesterolemia Variant interpretation in FH Functional studies LDLR APOB PCSK9 Cosegregation In silico prediction algorithms Laboratory genetic testing for FH Cases presentations Case A Presentation of the case Laboratory results Variant interpretation Case B Presentation of the case Laboratory results Variant interpretation Case C Presentation of the case Laboratory results Variant interpretation Case D Presentation of the case Laboratory results Variant interpretation Case E Presentation of the case Laboratory results Variant interpretation Case F Presentation of the case Laboratory results Variant interpretation Case G Presentation of the case Laboratory results Variant interpretation Case H Presentation of the case Laboratory results Variant interpretation Main final conclusion References Chapter-18---Classification-of-genetic-variants-_2021_Clinical-DNA-Variant-I 18 . Classification of genetic variants in hereditary cancer genes Introduction BRCA1/2-associated hereditary breast and ovarian cancer syndrome ATM-associated susceptibility to breast cancer Lynch syndrome BRCA2 c.9976A﹥T p.(Lys3326Ter) Presentation of the case Variant information: BRCA2 c.9976A﹥T p.(Lys3326Ter) Pathogenicity assessment of the variant Population data BRCA1/BRCA2 allele frequency thresholds Allele frequency Population frequencies Coverage of exon Computational and predictive data Functional data Assay—Homology-directed repair assay Experimental data from Mesman et al. [43] Segregation data Cosegregation analysis Data from Wu et al. [44] De novo data Allelic data Other database Other data Other data not considered in ACMG/AMP classification Case–control analysis Data from Meeks et al. [46] Summary of evidence and final classification (Box 18.12) Biological and clinical interpretation BRCA2 c.9117G﹥A Presentation of the case Pathogenicity assessment of the variant Population data BRCA1/BRCA2 allele frequency thresholds Allele frequency Population frequencies Coverage of exon Case–control data Case–control association study—Momozawa et al. [50] Computational and predictive data Splice predictors Functional data Assay 1—Patient mRNA splicing assay Experimental data from Colombo et al. [52]—Results extracted from Table 2 Assay 2—Construct-based assay Experimental data from Acedo et al. [51] Segregation data De novo data Allelic data Other database Other data Other data not considered in ACMG/AMP classification Multifactorial data from Lindor et al. [56]—Results extracted from Table 6 Summary of evidence and final classification (Box 18.23) Biological and clinical interpretation ATM c.9007_9034del Presentation of the case Pathogenicity assessment of the variant Population data Allele frequency Population frequencies Coverage of exon Computational and predictive Splice predictors Functional data Assays article 1 Carranza et al. [58] Assays article 2 Fievet et al. [59] Segregation data De novo data Allelic data Other database Other data Summary of evidence and final classification (Box 18.34) Biological and clinical interpretation MLH1 c.2041G﹥A Presentation of the case Pathogenicity assessment of the variant Population data Allele frequency Coverage of exon Summary of evidence Computational and predictive data Splice predictors Protein predictors Functional data Segregation data De novo data Allelic data Other database Other data Other data not considered in ACMG/AMP classification Summary of evidence and final classification (Box 18.46) Biological and clinical interpretation References Chapter-19---RASopathies_2021_Clinical-DNA-Variant-Interpretation 19 . RASopathies Introduction Classification of variants associated with a RASopathy General evidence criteria Gene-specific evidence criteria Case-level evidence criteria Case examples Noonan syndrome (Table 19.2) Cardio-facio-cutaneous Syndrome (Table 19.3) Costello syndrome (Table 19.4) Unknown RASopathy diagnosis (Tables 19.5 and 19.6) Summary References Chapter-20---Summary-and-conclusions_2021_Clinical-DNA-Variant-Interpretatio 20 . Summary and conclusions Future directions Index_2021_Clinical-DNA-Variant-Interpretation Index A B C D E F G H I L M N O P Q R S T U V W