دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Samuel S. P. Shen, Richard C. J. Somerville سری: ISBN (شابک) : 1108476872, 9781108476874 ناشر: Cambridge University Press سال نشر: 2019 تعداد صفحات: 456 [417] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 89 Mb
در صورت تبدیل فایل کتاب Climate Mathematics: Theory and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات آب و هوا: نظریه و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن منحصربهفرد زمینهای کامل و در عین حال قابل دسترس در ریاضیات، آمار و برنامهنویسی فراهم میکند که دانشآموزان برای دورههای درسی و تحقیق در علوم آب و هوا، هواشناسی و اقیانوسشناسی باید تسلط پیدا کنند. با فرض فقط ریاضیات دبیرستان، مفاهیم و تکنیکهای با دقت انتخاب شده در جبر خطی، آمار، محاسبات، حساب دیفرانسیل و انتگرال و معادلات دیفرانسیل را در چارچوب نمونههای واقعی علم آب و هوا ارائه میکند. تکنیکهای محاسباتی برای نشان دادن نحوه تجسم، تجزیه و تحلیل و اعمال دادههای آب و هوایی با کد R که در کتاب و کد R و Python به صورت آنلاین در دسترس هستند، یکپارچه شدهاند. تمرینهایی در پایان هر فصل با راهحلهای انتخابی در دسترس دانشآموزان برای کمک به خودآموزی و راهحلهای بیشتر بهصورت آنلاین فقط برای مربیان ارائه شده است. مکمل های آنلاین اضافی برای کمک به تدریس در کلاس درس شامل مجموعه داده ها، تصاویر و انیمیشن ها هستند. راهنمایی در مورد اینکه چگونه کتاب میتواند از دورههای مختلف در سطوح مختلف پشتیبانی کند، ارائه شده است، و آن را به متنی بسیار انعطافپذیر برای دانشجویان کارشناسی و کارشناسی ارشد، و همچنین محققان و دانشمندان حرفهای آب و هوا که نیاز به تجدید یا نوسازی مهارتهای کمی خود دارند، تبدیل میکند. >
This unique text provides a thorough, yet accessible, grounding in the mathematics, statistics, and programming that students need to master for coursework and research in climate science, meteorology, and oceanography. Assuming only high school mathematics, it presents carefully selected concepts and techniques in linear algebra, statistics, computing, calculus and differential equations within the context of real climate science examples. Computational techniques are integrated to demonstrate how to visualize, analyze, and apply climate data, with R code featured in the book and both R and Python code available online. Exercises are provided at the end of each chapter with selected solutions available to students to aid self-study and further solutions provided online for instructors only. Additional online supplements to aid classroom teaching include datasets, images, and animations. Guidance is provided on how the book can support a variety of courses at different levels, making it a highly flexible text for undergraduate and graduate students, as well as researchers and professional climate scientists who need to refresh or modernize their quantitative skills.
Front matter Copyright Dedications Contents Preface Acknowledgements Main Symbols and Acronyms 1 Dimensional Analysis for Climate Science 1.1 Dimension and Units 1.2 Fundamental Dimensions: LMTθI-class 1.3 Dimensional Analysis for a Simple Pendulum 1.4 Dimensional Analysis for the State Equation of Air 1.5 Dimensional Analysis of Heat Diffusion 1.6 Dimensional Analysis of Rossby Waves and Kelvin Waves 1.6.1 Parameters for Rossby Waves 1.6.2 Non-Dispersive Properties of Kelvin Waves 1.7 Estimating the Shock Wave Radius of a Nuclear Explosion by Dimensional Analysis 1.8 Chapter Summary References and Further Readings Exercises 2 Basics of R Programming 2.1 Download and Install R and RStudio 2.2 R Tutorial 2.2.1 R As a Smart Calculator 2.2.2 Define a Sequence in R 2.2.3 Define a Function in R 2.2.4 Plot with R 2.2.5 Symbolic Calculations by R 2.2.6 Vectors and Matrices 2.2.7 Simple Statistics by R 2.3 Online Tutorials 2.3.1 YouTube Tutorial: For True Beginners 2.3.2 YouTube Tutorial: For Some Basic Statistical Summaries 2.3.3 YouTube Tutorial: Input Data by Reading a csv File into R 2.4 Chapter Summary References and Further Readings Exercises 3 Basic Statistical Methods for Climate Data Analysis 3.1 Statistical Indices from the Global Temperature Data from 1880 to 2015 3.1.1 Mean, Variance, Standard Deviation, Skewness, Kurtosis, and Quantiles 3.1.2 Correlation, Covariance, and Linear Trend 3.2 Commonly Used Statistical Plots 3.2.1 Histogram of a Set of Data 3.2.2 Box Plot 3.2.3 Scatter Plot 3.2.4 Q-Q Plot 3.3 Probability Distributions 3.3.1 What Is a Probability Distribution? 3.3.2 Normal Distribution 3.3.3 Student’s t-distribution 3.4 Estimate and Its Error 3.4.1 Probability of a Sample inside a Confidence Interval 3.4.2 Mean of a Large Sample Size: Approximately Normal Distribution 3.4.3 Mean of a Small Sample Size t-Test 3.5 Statistical Inference of a Linear Trend 3.6 Free Online Statistics Tutorials 3.7 Chapter Summary References and Further Readings Exercises 4 Climate Data Matrices and Linear Algebra 4.1 Matrix as a Data Array 4.2 Matrix Algebra 4.2.1 Matrix Equality, Addition, and Subtraction 4.2.2 Matrix Multiplication 4.3 A Set of Linear Equations 4.4 Eigenvalues and Eigenvectors of a Square Space Matrix 4.4.1 Matrices of Data Anomalies, Standardized Anomalies, Covariance, and Correlation 4.4.2 Eigenvectors and Their Corresponding Eigenvalues 4.5 An SVD Representation Model for Space-Time Data 4.6 SVD Analysis of Southern Oscillation Index 4.6.1 Standardized SLP Data and SOI 4.6.2 Weighted SOI Computed by the SVD Method 4.6.3 Visualization of the ENSO Mode Computed from the SVD Method 4.7 Mass Balance for Chemical Equations in Marine Chemistry 4.8 Multivariate Linear Regression Using Matrix Notations 4.9 Chapter Summary References and Further Readings Exercises 5 Energy Balance Models for Climate 5.1 EBM for Modeling the Moon’s Surface Temperature 5.1.1 Moon-Earth-Sun Orbit and Lunar Surface 5.1.2 Moon’s Surface Temperature 5.1.3 EBM Prediction for the Moon Surface Temperature 5.2 EBM for the Global Average Surface Temperature of the Earth: A Zero-Dimensional Climate Model 5.2.1 The Incoming Power from the Solar Radiation to the Earth 5.2.2 The Outgoing Power from Long-Wave Radiation Emitted by the Earth 5.2.3 EBM as a Power Balance 5.3 EBM for the Global Average Surface Temperature of an Earth with a Nonlinear Albedo Feedback 5.4 Time-Dependent Zero-Dimensional EBM for the Earth’s Global Average Surface Temperature 5.4.1 An EBM Including Time Dependence 5.4.2 Stability Analysis of the Multiple Solutions of the EBM with a Nonlinear Albedo Feedback 5.4.3 Energy Flow Budget and Greenhouse Effect for the Earth’s Climate 5.5 Increasing the Complexity of Climate Models 5.6 Chapter Summary References and Further Readings Exercises 6 Calculus Applications to Climate Science I: Derivatives 6.1 Stefan-Boltzmann Law and Budyko’s Approximation 6.2 Linear Approximation 6.3 Bisection Method for Solving Nonlinear Equations 6.4 Newton’s Method 6.5 Examples of Higher-Order Derivatives 6.6 Pressure Gradient Force and Coriolis Force 6.7 Spatiotemporal Variations of the Atmospheric and Oceanic Temperature Fields 6.8 Taylor Polynomial as a High-Order Approximation 6.8.1 Taylor’s Theorem 6.8.2 Taylor Series Example: Exponential Function 6.8.3 Numerical Integration Using Taylor Expansion 6.9 Chapter Summary References and Further Readings Exercises 7 Calculus Applications to Climate Science II: Integrals 7.1 Geopotential and Atmospheric Pressure 7.1.1 Vertical Forces on a Small Parcel of Atmosphere 7.1.2 Geopotential 7.2 Hypsometric Equation: Exponential Decrease of Pressure with Respect to Elevation 7.2.1 The General Hypsometric Equation 7.2.2 An Application of the Hypsometric Equation: Calculate the Elevation of Mount Mitchell 7.2.3 Hypsometric Equation for an Isothermal Layer 7.2.4 Error Estimate of the Linear Approximation to the Hypsometric Equation 7.2.5 Applications of Geopotential Height in Radiosonde Measurements 7.3 Work Done by an Air Mass in Expansion 7.4 Internal Energy, Enthalpy, and Entropy 7.4.1 Internal Energy and Enthalpy 7.4.2 Entropy 7.5 Use of Integrals to Derive Stefan-Boltzmann’s Blackbody Radiation Formula from Planck’s Law of Radiation 7.6 Chapter Summary References and Further Readings Exercises 8 Conservation Laws in Climate Dynamics 8.1 Conservation of Mass 8.1.1 Basic Elements of the Continuum Mechanics Method for Climate Modeling 8.1.2 Lagrangian and Eulerian Observers, and Mass Conservation in the Lagrangian Framework 8.1.3 Total Derivative 8.1.4 Mass Conservation in the Eulerian Framework 8.2 Conservation of Momentum Over a Grid Box: F = ma 8.3 The Equations of Momentum Conservation in x,y,z,t Coordinates 8.4 Geostrophic Approximation of the Momentum Equations 8.4.1 Mathematical Description of the Geostrophic Approximation 8.4.2 Flow Direction Perpendicular to the PGF under the Geostrophic Approximation 8.5 The Potential Vorticity Conservation Equation 8.5.1 Absolute Vorticity and Relative Vorticity 8.5.2 Potential Vorticity and Its Conservation 8.5.3 Mathematical Derivations of the Conservation of Potential Vorticity 8.6 Chapter Summary References and Further Readings Exercises 9 R Graphics for Climate Science 9.1 Two-Dimensional Line Plots and Setups of Margins and Labels 9.1.1 Plot Two Different Time Series on the Same Plot 9.1.2 Figure Setups: Margins, Fonts, Mathematical Symbols, and More 9.1.3 Plot Two or More Panels on the Same Figure 9.2 Color Contour Maps 9.2.1 Basic Principles for an R Contour Plot 9.2.2 Plot Contour Color Maps for Random Values on a Map 9.2.3 Plot Contour Maps from Climate Model Data in NetCDF Files 9.3 Plot Wind Velocity Field on a Map 9.3.1 Plot a Wind Field Using arrow .plot 9.3.2 Plot a Surface Wind Field from netCDF Data 9.4 ggplot for Data 9.5 Animation 9.6 Chapter Summary References and Further Readings Exercises 10 Advanced R Analysis and Plotting: EOFs, Trends, and Global Data 10.1 Ideas of EOF, PC, and Variances Computed from SVD 10.2 2Dim Spatial Domain EOFs and IDim Temporal PCs 10.2.1 Generate Synthetic Data by R 10.2.2 SVD for the Synthetic Data EOFs, Variances, and PCs 10.3 From Climate Data Download to EOF and PC Visualization: An NCEP/NCAR Reanalysis Example 10.3.1 Download and Visualize the NCEP Temperature Data 10.3.2 Space-Time Data Matrix and SVD 10.4 Area-Weighted Average and Spatial Distribution of Trend 10.4.1 Global Average and PC1 10.4.2 Spatial Pattern of Linear Trends 10.5 GPCP Precipitation Data: Analysis and Visualization by R 10.5.1 Read and Write GPCP Data 10.5.2 GPCP Climatology and Standard Deviation 10.6 Chapter Summary References and Further Readings Exercises 11 R Analysis of Incomplete Climate Data 11.1 The Missing Data Problem 11.2 Read NOAAGlobalTemp and Form the Space-Time Data Matrix 11.2.1 Read the Downloaded Data 11.2.2 Plot the Temperature Data Map of a Given Month 11.2.3 Extract the Data for a Specified Region 11.2.4 Extract Data from Only One Grid Box 11.3 Spatial Averages and Their Trends 11.3.1 Compute and Plot the Global Area-Weighted Average of Monthly Data 11.3.2 Percent Coverage of the NOAAGlobalTemp 11.3.3 Compare Trends and Variances at Two Different Locations 11.3.4 Which Month Has the Strongest Trend? 11.3.5 Spatial Average of Annual Data 11.3.6 Nonlinear Trend of the Global Average Annual Mean Data 11.4 Spatial Characteristics of the Temperature Change Trends 11.4.1 The Twentieth-Century Temperature Trend 11.4.2 Twentieth-Century Temperature Trend Computed under a Relaxed Condition 11.4.3 Trend Pattern for the Four Decades of Consecutive Warming: 1976-2016 11.5 Chapter Summary References and Further Readings Exercises Appendix A Dot Product of Two Vectors A.1 Two Definitions for the Dot Product A.2 Solar Power Flux to the Earth’s Surface and Seasonality A.3 Divergence Theorem for the Mass Continuity Equation in Climate Models Appendix B Cross Product of Two Vectors B.1 Definition of the Cross Product of Two Vectors B.2 Coriolis Force B.3 Vorticity B.4 Stokes’ Theorem Appendix C Spherical Coordinates C.l Transform between the Spherical Coordinates and Cartesian Coordinates C.2 Area and Volume Differentials in Spherical Coordinates Appendix D Calculus Concepts and Methods for Climate Science D.1 Descartes’ Direct Calculus for Functions of a Single Variable D.2 Calculus from a Statistics Perspective D.2 Calculus from a Statistics Perspective D.3 Differentiation Methods and Higher Derivatives D.4 Calculus for Functions of Two and More Variables References and Further Readings Exercises Appendix E Sample Solutions to the Climate Mathematics Exercises Glossary Index