دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Mohammad Zabed Hossain, Hossain Md Anawar, Doongar R. Chaudhary سری: ISBN (شابک) : 9781032079844, 9781003214885 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 266 [267] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 29 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Climate Change and Legumes: Stress Mitigation for Sustainability and Food Security به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تغییرات آب و هوا و حبوبات: کاهش استرس برای پایداری و امنیت غذایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یافتههای تحقیقاتی اخیر و بررسیهای مربوط به مشکلات مرتبط با آب و هوا، پتانسیل حبوبات در بهبود اثرات تغییرات آب و هوایی و همچنین مدیریت بهتر زمینهای کشاورزی و شیوههای دستیابی به پایداری زیستمحیطی و امنیت غذایی را گردآوری میکند.
This book compiles recent research findings and reviews on climate-related problems, the potential of legumes in ameliorating the impacts of climate change as well as better management of agricultural land and practices for achieving environmental sustainability and food security.
Cover Half Title Title Page Copyright Page Contents Preface Editor Bio Contributors 1. Legume Plants in the Context of Global Climate Change: Challenges and Scopes for Environmental Sustainability 1.1 Introduction 1.2 Global Climate Change: Evidence and Patterns across Continents 1.2.1 Evidence of Global Climate Change 1.2.2 Continental Patterns of Global Climate Change 1.2.2.1 Climate Change in Asia 1.2.2.2 Climate Change in Africa 1.2.2.3 Climate Change in Europe 1.2.2.4 Climate Change in Australia 1.2.2.5 Climate Change in North America 1.2.2.6 Climate Change in Central and South America 1.3 Impact of Climate Change on Crop Production 1.3.1 Impacts on Variety, Species, and Functional Types 1.3.2 Trends in Crop Production 1.4 Legumes and Biological Nitrogen Fixation 1.4.1 Taxonomic Description of Legumes 1.4.2 Nodulation and Biological Nitrogen Fixation 1.5 Climate-Induced Stresses on Legumes 1.5.1 Effects of Drought Stress 1.5.2 Effects of Heat Stress 1.5.3 Effects of Salinity 1.6 Benefits of Legumes for Environmental Sustainability 1.6.1 Role of Legumes in Mitigating Global Warming 1.6.2 Role of Legumes in Improving Soil Fertility 1.6.3 Role of Legumes in Soil Moisture Retention 1.6.4 Role of Legumes in Weed, Pest, and Disease Control 1.6.5 Role of Legumes in Reclaiming Degraded Soils 1.6.6 Role of Legumes in Enhancing Biodiversity and Ecosystem Stability 1.7 Conclusion and Future Perspectives References 2. Diversity in Legume Genetic Resources for Adaptation to Climate Stress 2.1 Introduction 2.2 Implications for Plants' Response to Climate Change 2.3 Legume Genetic Resources 2.4 Preservation of Seeds in Medium- and Long-Term Collections 2.5 Legume Production Sustainability and Climate Change 2.6 The Effect of Climate Change on Product Yield and Genetic Approaches 2.7 Conclusions and Perspectives References 3. Diversity and Distribution of Legumes in Pakistan 3.1 Introduction 3.2 Geographic Distribution of Plants 3.3 Distribution of Legumes in Pakistan 3.4 Genetic Diversity 3.5 Taxonomy, Distribution, and Uses of Legumes in Pakistan 3.5.1 Papilionoideae 3.5.2 Mimosoideae 3.5.3 Caesalpinoideae 3.6 Status of Legume Genebank 3.7 Conclusion References 4. Legume Inoculants Using Rhizobia Strains Effective to Reduce Nitrous Oxide Emissions 4.1 Introduction 4.1.1 Biological Fixation of Atmospheric Nitrogen 4.1.2 Nitrous Oxide 4.1.3 Sources of Nitrous Oxide Emissions 4.1.3.1 Nitrification 4.1.3.2 Denitrification 4.2 Agriculture and Nitrous Oxide 4.3 Nitrogen Use Efficiency 4.4 The Legumes 4.5 The Rhizobia 4.6 The Rhizobia-Legume Symbiosis 4.7 Nitrous Oxide Emission by Legume Nodules 4.7.1 Nitrous Oxide Emission by Nodules of Soybean (Glycine max) 4.7.2 Nitrous Oxide Emission by Nodules of Alfalfa (Medicago sativa) 4.7.3 Nitrous Oxide Emission by Nodules of Common Beans (Phaseolus vulgaris) 4.7.4 N2O Emission by Other Rhizobia 4.7.5 Measuring N2O Production by Nodules 4.7.6 Perspectives and Strategies to Mitigate N2O Production by Nodules Acknowledgments References 5. Proteomics: Aim at Stress Mitigation in Soybean under Flooding 5.1 Introduction 5.2 Proteomics for Flooding Response Mechanism in Soybean 5.3 Proteomics of Soybean with Application of Chemicals for Flooding Tolerance 5.3.1 Plant-Derived Smoke Treatment 5.3.2 Abscisic Acid Treatment 5.3.3 Nanoparticle Treatment 5.3.4 Calcium Application 5.3.5 Other Applications 5.4 Proteomics Using Generated Flood-Tolerant Soybean Lines/Varieties 5.4.1 Soybean Varieties with Flooding Tolerance 5.4.2 Mutant Soybean with Flooding Tolerance 5.4.3 Transgenic Soybean Overexpressed Flood-Response Gene 5.5 Conclusion and Future Prospective References 6. Impact of High Temperature Stress and Its Alleviation in Fabaceae 6.1 Introduction 6.2 Heat Stress and Its General Effects on Plants 6.3 Production Loss in Legumes due to Heat Stress 6.4 Comparison of the Family Fabaceae with Poaceae against Heat Stress 6.5 Alleviation of Heat Stress 6.6 Conclusion References 7. Genetic Improvement for Development of a Climate Resilient Food Legume Crops: Relevance of cowpea breeding approach in improvement of food legume crops for future 7.1 Introduction 7.2 The Importance of Legumes in Meeting Food and Nutrition Security 7.3 Performance of Food Legumes under Drought and Heat Stress 7.3.1 Drought and Heat Stress at Flowering and Pod Formation of Legumes 7.4 Environmental Resources Utilization by Legumes 7.4.1 Soil Environment 7.4.2 Water Use of Legumes 7.4.3 Effect of Photoperiod 7.5 Consequences of Drought and Heat Stress on Productivity of Legumes 7.6 Mechanisms of Drought and Heat Stress Tolerance 7.6.1 Escape (Drought Avoidance) 7.6.2 Dehydration and Heat Avoidance 7.6.3 Tolerance to Drought and Heat (Dehydration Tolerators) 7.6.3.1 Morphological Adaptation 7.6.3.2 Physiological Adaptation 7.6.3.3 Molecular and Biochemical Adaptation 7.7 Breeding Approaches for Combating Drought and Heat Stress 7.7.1 Physiological Breeding Approach 7.7.2 DNA Marker-Assisted Selection 7.8 Legume Floral Traits and Early Maturity 7.8.1 Genetics of Early Maturity in Food Legume Crops 7.8.2 Genetics of Drought and Heat Tolerance in Food Legumes 7.9 Seed Traits and Grain Quality 7.10 Breeding for Resistance to Bacterial, Fungal, and Viral Diseases 7.11 Breeding for Resistance to Nematodes 7.12 Breeding for Resistance to Insect Pests and Parasitic Weeds References 8. Innovations in Agronomic Management for Adaptation to Climate Change in Legume Cultivation 8.1 Introduction 8.2 Climate Change 8.3 Plant Breeding and Genetic Approaches 8.4 Planting Date - A Factor for Crop Production 8.5 Plant Population 8.6 Biodiversity for Agricultural Sustainability 8.7 Choice of Crop - A Vital Issue for Eco-friendly Cultivation 8.8 Crop Rotation and Cover Crops 8.9 Intercropping 8.10 Cover Crops 8.11 Soil Tillage 8.12 Fertilizing and Irrigation 8.13 Conclusions References 9. Sustainable Amelioration Options and Strategies for Salinity-Impacted Agricultural Soils 9.1 Introduction 9.2 Strategies for Mitigating Salt Stress 9.2.1 Agronomic Practices 9.2.1.1 Irrigation 9.2.1.2 Crop Rotation 9.2.1.3 Use of Grafting 9.2.1.4 Use of Priming Techniques 9.2.2 Biological Methods 9.2.2.1 Use of Salt-Tolerant Crops and Transgenics 9.2.2.2 Remediation by Using Microorganisms 9.2.2.3 Phytoremediation of Salt-Affected Soil 9.2.3 Amendments by Inorganic Fertilizers 9.2.3.1 Application of Lime 9.2.3.2 Amelioration by Gypsum Addition 9.2.3.3 By Using Zinc-Fertilizers 9.2.3.4 Integrated Plant Nutrient Supplies 9.2.4 Organic Amendments 9.2.4.1 Use of Biochars and Composts to Remediate Saline-Sodic Soil 9.2.4.2 Use of Peat 9.2.4.3 Furfural Residues 9.2.5 Effects of Bio-organic Amendments on Saline Soils 9.2.6 Combined Use of Gypsum and Bio-organic Amendments 9.3 Global Climate Change and Salinity: A Case Study of Reclamation and Adaptations 9.4 Conclusion References 10. Microbial Populations and Soil Fertility in the Coastal Lands of India 10.1 Introduction 10.2 Land Degradation by Salinity 10.3 Distribution and Occurrence of Coastal Land in India 10.4 Crop Production Constraints in Coastal Soils 10.5 Effect of Soil Salinity on Plants 10.6 Salt Tolerance in Halophytes 10.7 Soil Fertility of the Coastal Soils of India 10.8 Soil Microbial Community Structure in Coastal Soil 10.8.1 Plant-Microbe Interaction in the Coastal Ecosystem 10.8.2 Salt-Tolerant Plant Growth-Promoting Rhizobacteria (PGPR) 10.9 Conclusions Acknowledgments References 11. Strategic Solutions and Futuristic Challenges for the Cultivation of Food Legumes in India 11.1 Introduction 11.2 Challenges Identified for the Cultivation of Legumes 11.3 Desired Strategic Solution 11.3.1 Resource Use Efficient Technologies 11.3.2 Promotion of Efficient Water Management Technologies 11.3.3 Shifting of Pulses in Niche Areas 11.3.4 Crop Improvement Strategies 11.3.4.1 Non-lodging, Input Responsive, Short-Duration Pulse Cultivars 11.3.4.2 Breeding Abiotic and Biotic Stress Tolerance Cultivars 11.3.4.3 Added Breeding Approaches 11.3.4.4 Inclusion of Speed Breeding 11.3.4.5 Pre-breeding 11.3.4.6 Hybrid Breeding 11.3.4.7 Genomics-Assisted Breeding 11.3.4.8 Genomic Resources 11.3.4.9 Candidate Genes and Trait Discovery 11.3.4.10 Virus-Induced Gene Silencing 11.3.4.11 CRISPR/Cas9 Induced Genome Editing 11.4 Conclusion References 12. Climate-Induced Droughts and Its Implications for Legume Crops 12.1 Introduction 12.1.1 Drought and Desertification 12.1.2 Types of Drought 12.1.2.1 Meteorological Drought 12.1.2.2 Agricultural Drought 12.1.2.3 Hydrological Drought 12.1.2.4 Socioeconomic Drought 12.1.3 Links between Drought Severity and Climate Change 12.1.4 Causes of Droughts 12.1.4.1 Lack of Rainfall or Precipitation 12.1.4.2 Anthropogenic Causes 12.1.4.3 Drying Out of Surface Water Flow 12.1.4.4 Climate Change and Global Warming 12.1.4.5 Inappropriate Farming Practices 12.1.5 Major Drought Prone Areas of the World 12.1.5.1 Drought Prone Areas in Africa 12.1.5.2 Drought Prone Areas in Asia 12.1.5.3 Drought Severity in Australia 12.1.5.4 Drought Severity in Europe 12.1.5.5 Drought Severity in South America 12.1.5.6 Drought Severity in North America 12.1.6 Impacts of Drought on Agriculture 12.2 Legumes and Their Origin 12.2.1 Global Production of Legumes 12.3 Drought Effects on Legume Crops 12.3.1 Seed Germination and Growth Reduction 12.3.2 Root Growth 12.3.3 Leaf Traits 12.3.4 Plant Height 12.4 Yield Reductions in Legumes 12.5 Recommendations for Better Water Use 12.6 Conclusion References 13. Implication of Climate Change on the Productivity of Legumes 13.1 Introduction 13.2 Consequence of High Temperature and CO2 13.3 Pattern of Climate Change 13.4 Yield Constraints in Major Grain Legumes 13.4.1 Photothermosensitivity 13.4.2 Drought 13.4.3 High Temperature 13.5 Effect of High Temperature on Reproductive and Seed Development in Pulses 13.6 Effect of Combined Stresses of Drought and Heat 13.7 Water-Use Efficiency, Canopy Temperature, and Transpiration under Drought and Heat 13.8 Response of Major Food Legumes to Climate Change 13.8.1 Cool Season Legumes 13.8.1.1 Chickpea 13.8.1.2 Lentil 13.8.2 Warm Season Legumes 13.8.2.1 Greengram or Mungbean 13.8.2.2 Blackgram or Urdbean 13.8.2.3 Pigeonpea 13.9 Climate Smart Food Legumes 13.10 Phenotyping of Grain Legumes 13.10.1 Thermal Imaging 13.10.2 Identification of Stable High-Yielding Genotypes 13.10.3 Photosynthesis and Chlorophyll Fluorescence 13.10.4 Membrane Stability 13.10.5 Acquired Thermotolerance 13.10.6 Expression of Heat Shock Protein 13.10.7 Specific Leaf Area (SLA), Chlorophyll, and Water-Use Efficiency (WUE) 13.10.8 Sucrose Synthase Activity 13.10.9 Pollen Viability and Germination 13.11 Phenotyping for Drought and Heat Tolerance 13.11.1 Oxidative Stress 13.11.2 Combined Effects of Drought and Heat 13.11.3 Stem Remobilization and Respiration 13.11.4 Root Traits for Combined Tolerance to Heat and Drought 13.11.5 Relevance of Combined Tolerance to Heat and Drought in Pulses 13.11.6 Strategies to Improve Yield under the Changing Scenario of Climate 13.11.6.1 Identification of Cultivars with Wider Adaptability 13.11.6.2 Osmotic Adjustment 13.11.6.3 Modification of Crop Duration and Phenology with High Biomass 13.12 Traits Intogression for Combined Tolerance 13.12.1 Use of Wild Accessions 13.12.2 Sources of Heat-Tolerant Genotypes in Pulses 13.12.3 Genomic and Transgenic Approaches 13.12.4 Genes for Drought Tolerance in Pulses 13.12.5 Transgenic Approach 13.12.6 Signaling and Drought Stress Tolerance 13.12.7 Molecular Markers for Adaptive Traits 13.12.8 Genomics Approaches for Stress Tolerance 13.12.9 Conventional and Omics-Based Breeding for Stress Tolerance 13.13 Conclusions References Index