دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بوم شناسی ویرایش: نویسندگان: Shah Fahad, Muhammad Adnan, Shah Saud, Lixiao Nie سری: Footprints of Climate Variability on Plant Diversity ISBN (شابک) : 1032260688, 9781032260686 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 279 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Climate Change and Ecosystems: Challenges to Sustainable Development به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تغییرات آب و هوا و اکوسیستم ها: چالش های توسعه پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پیش بینی می شود که جمعیت جهان به میزان 3.3 میلیارد از 6.7 میلیارد در سال 2008 به 10 میلیارد در سال 2100 افزایش یابد. در نتیجه، تخریب خاک و بیابان زایی به دلیل افزایش تقاضا برای غذا، خوراک، فیبر و سوخت در منابع محدود خاک مشکل ناامنی غذایی جهانی ممکن است با تهدید گرمایش جهانی بدتر شود. تغییرات آب و هوایی تأثیرات خود را از نظر افزایش دما، بارندگی متغیر و افزایش شدیدهای مرتبط با آب و هوا مانند سیل، خشکسالی، طوفان، افزایش سطح دریا، شوری و فرسایش خاک نشان می دهد. بخش کشاورزی حساس ترین بخش به تغییرات آب و هوایی است زیرا آب و هوای یک منطقه/کشور ماهیت و ویژگی های پوشش گیاهی و محصولات را تعیین می کند. افزایش میانگین دمای فصلی و کاهش بارندگی موثر میتواند طول مدت بسیاری از محصولات را کاهش داده و منجر به شیوع آفات و بیماریها و در نتیجه کاهش عملکرد نهایی و در نهایت امنیت غذایی کشور شود. علیرغم تأثیر مثبت کوددهی CO2، بهره وری خالص ممکن است به دلیل افزایش نرخ تنفس، تنش خشکی و کمبود مواد مغذی کاهش یابد. به عنوان مثال، به ازای هر 75 پی پی ام افزایش غلظت CO2، عملکرد برنج 0.5 تن در هکتار افزایش می یابد، اما عملکرد برنج به ازای هر 1 درجه سانتی گراد افزایش دما، 0.6 تن در هکتار کاهش می یابد. انتظار می رود بهره وری کشاورزی جهانی تا سال 2080 از 3 درصد به 16 درصد کاهش یابد. کاهش تخمین زده شده در بهره وری کشاورزی در کشورهای در حال توسعه بین 10 تا 25 درصد در دهه 2080 است، جایی که میانگین دمای هوا در حال حاضر نزدیک یا بالاتر از سطح تحمل محصول است. این کتاب در نظر گرفته شده است تا به عنوان مجموعه ای محرک عمل کند که به بحث و تأمل در مورد آینده پایدار کشاورزی و تولید مواد غذایی در مواجهه با تغییرات جهانی کمک کند.
ویژگی ها:< /span>
این کتاب به منظور ارائه یک نمای کلی از چالشهای عمده پیش روی سیاستگذاران، محققان و در نهایت نوع بشر در مواجهه با تغییرات اقلیمی طراحی شده است.
این کتاب ویژگیهای متنوع آسیبپذیری، سازگاری و بهبود تغییرات آب و هوایی در رابطه با گیاهان، محصولات، خاک و میکروبها برای پایداری بخش کشاورزی و در نهایت امنیت غذایی برای آینده.
این کتاب توصیفی پیشرفته از وضعیت فیزیولوژیکی، بیوشیمیایی و مولکولی درک تنش غیرزیستی در گیاهان ارائه میکند.
< /span>The global population is projected to increase by 3.3 billion from 6.7 billion in 2008 to 10 billion in 2100. As a result, soil degradation and desertification are growing due to the increasing demand for food, feed, fiber, and fuel on finite soil resources. The problem of global food insecurity may be further worsened by the threat of global warming. Climate change is showing its impacts in terms of increasing temperatures, variable rainfall, and an increase in climate-related extremes such as floods, droughts, cyclones, sea-level rise, salinity, and soil erosion. The agriculture sector is the most sensitive to climate change because the climate of a region/country determines the nature and characteristics of vegetation and crops. Increase in the mean seasonal temperature and decrease in effective precipitation can reduce the duration of many crops, may lead to outbreaks of pests and diseases, and hence reduce final yield ultimately affecting the food security of the country. Despite the positive impact of CO2 fertilization, the net productivity may decrease because of an increase in respiration rate, drought stress, and nutrient deficiency. For example, for every 75 ppm increase in CO2 concentration, rice yields will increase by 0.5 t/ha, but the yield will decrease by 0.6 t/ha for every 1°C increase in temperature. The global agricultural productivity is expected to decrease from 3% to 16% by 2080. The estimated decrease in agricultural productivity in the developing countries is 10%–25% in the 2080s, where average air temperature is already near or above crop tolerance levels. This book is intended to serve as a stimulating collection that will contribute to debate and reflection on the sustainable future of agriculture and food production in the face of global change.
Features:
This book has been designed to provide a good overview of major challenges facing policymakers, researchers, and ultimately humankind in dealing with climate change.
This book summarizes the diverse features of vulnerability, adaptation, and amelioration of climate change in respect to plants, crops, soil, and microbes for the sustainability of the agricultural sector, and, ultimately, food security for the future.
This book provides a state-of-the-art description of the physiological, biochemical, and molecular status of the understanding of abiotic stress in plants.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Acknowledgments Editors Contributors 1. Microbial Flora of Marble Waste-Polluted Environment in the Phylogenetic Perspectives 1.1 Introduction 1.1.1 Isolation and Characterization of Microbes 1.1.2 Marble Waste-Polluted System 1.1.3 Introduction to Study Area 1.1.4 Justification 1.2 Materials and Methods 1.2.1 Collection of Samples 1.2.2 Isolation, Morphological and Microscopic Identification of Fungal Flora 1.2.2.1 Molecular and Phylogenetic Analyses 1.2.3 Isolation, Morphological and Microscopic Identification of Bacterial Flora 1.3 Results 1.3.1 Characterization and Phylogenetic Studies of Fungal Flora 1.3.1.1 Phylogenetic Analysis of the Selected Microfungi 1.3.2 Characterization of Bacterial Strains 1.3.2.1 Gram Staining Microscopic Characterization 1.3.2.2 Biochemical Characteristics 1.4 Discussion 1.5 Conclusion Acknowledgments References 2. Interaction of Environment and Entomology 2.1 Introduction 2.1.1 Interactions between Environment and Species 2.2 Insects as Important Component of Environment 2.2.1 Ecological Importance 2.3 Aquatic Insects, Distribution and Salinity Tolerance 2.3.1 Arctic Insects and Their Environment 2.3.2 Responses of Insects to Low Temperature 2.4 Insects’ Role in Ecosystem 2.4.1 Shelter-Building Insects 2.4.2 Gall Farmers 2.4.3 Leaf Miners 2.4.4 Leaf Tents 2.4.5 Leaf Rollers and Leaf Tiers 2.5 Effects of Insects on Ecosystem Functioning 2.5.1 Insects’ Role in Carbon Cycle 2.5.2 Insects’ Role in Nitrogen Cycle 2.6 Conclusion References 3. Climate Change, Insects and Global Food Production 3.1 Introduction 3.2 Climate Change in Current Scenario 3.3 Role of Insects in Agriculture 3.4 Climate Change and Global Food Production 3.5 Effects of Climate Change on Insects Biodiversity 3.6 Effects of Climate Change on Distribution of Insects 3.7 Effects of Climate Change on Population and the Number of Generations of Insects 3.8 Conclusion and Recommendations References 4. Extreme High Temperature and Plant Life 4.1 Introduction 4.1.1 Effects of High Temperature on Plants 4.1.1.1 Germination 4.1.1.2 Growth 4.1.1.3 Photosynthesis and Gaseous Exchange 4.1.1.4 Reproductive Development 4.1.1.5 Yield 4.1.1.6 Oxidative Stress 4.2 Plants Adaptation to High-Temperature Stress 4.2.1 Avoidance Mechanisms 4.2.2 Tolerance Mechanisms 4.3 Summary and Conclusion References 5. Molecular and Physiological Mechanism of Native Plants to Combat Drought Stress under Changing Climatic Conditions 5.1 Introduction 5.2 Drought 5.3 Drought Resistance Mechanisms 5.4 Water Shortage and Possible Solutions for Green Sector 5.5 Native Plants and Landscaping 5.6 Public Interest for Native Plants in Landscaping 5.7 Promotion of Native Plants Market 5.8 Recommendation for Future Research References 6. Climate Change-Oriented Elevation of Carbon Dioxide: Implications on Plant Physiology and Global Food Security 6.1 An Introduction to Climate Change and Elevated Carbon Dioxide: Past, Present and Future 6.2 Why Carbon Dioxide Got More Consideration? 6.3 Impacts of Climate Change 6.3.1 Climate Change Is Responsible in Driving Global Hunger 6.3.2 Climate, Weather and Crops 6.3.3 Climate Change’s Pervasive Influence 6.4 Adapting New Changes to Combat Climate Change 6.5 Ecosystem Controls on Carbon Sequestering 6.5.1 Plant Community Interactions under Elevated CO[sub(2)] 6.5.2 Differences among Plant Functional Types in Response to Elevated CO[sub(2)] 6.6 Overall Effects of Elevated CO[sub(2)] on Agricultural Crops and Plants 6.6.1 Short- and Long-Term Exposure 6.6.2 Impact of Elevated CO[sub(2)] on Gaseous Exchange Mechanism 6.6.3 Impact of Elevated CO[sub(2)] on Different Agricultural Crops to Cope Different Stresses by Altering Metabolic Pathway 6.6.4 Impact of Elevated CO[sub(2)] on Other Trees and Fruits 6.7 Conclusion 6.8 Future Prospective References 7. Effect of Environmental Pollution on Plant Growth 7.1 Introduction 7.2 Deleterious Effects of Air Pollution on Plants 7.2.1 Leaf Morphology of Plants and Air Pollution 7.2.2 Pigments Content and Air Pollution 7.2.3 Leaf Structure and Air Pollution 7.2.4 Flowering and Air Pollution 7.2.5 Root Damage and Air Pollution 7.2.6 Stomata Damage and Air Pollution 7.2.7 Plant Sugar and Air Pollution 7.2.8 Proline and Air Pollution 7.3 Conclusion References 8. Phyto-Ecological Studies of Genus Phoenix (Linn.) (Date Palms) from Various Zones of Pakistan 8.1 Introduction 8.1.1 Historical Background 8.1.2 Taxonomic Detail of Genus Phoenix 8.1.2.1 Genus Phoenix 8.1.2.2 Leaves 8.1.2.3 Inflorescence 8.1.2.4 Fruit 8.1.3 Study Area Pakistan 8.1.3.1 Geography and Climate 8.1.3.2 Geology of Pakistan 8.1.4 Date Palm and Monsoon 8.1.5 Temperature Requirements of Date Palm 8.1.6 Dates City, Khairpur 8.1.7 Pollination in Date Palm 8.2 Conclusion References 9. Soil Biodiversity in Changing Climate 9.1 Introduction 9.2 Climate Change Effects on Soil Properties 9.2.1 Physical Properties 9.2.1.1 Soil Temperature 9.2.1.2 Soil Water 9.2.1.3 Soil Structure 9.2.1.4 Bulk Density 9.2.2 Chemical Properties 9.2.2.1 Soil pH 9.2.2.2 Electrical Conductivity 9.2.2.3 Cation-Exchange Capacity 9.2.3 Biological Properties 9.3.3.1 Soil Organic Matter 9.2.3.2 Soil Carbon 9.2.3.3 Soil Microbial Biomass 9.2.3.4 Enzyme Activities 9.3 Climate Change Effects on Soil Biodiversity 9.3.1 Effect of Changes in Soil Temperature on Soil Biodiversity 9.3.2 Effect of Changes in CO[sub(2)] on Soil Biodiversity 9.4 Conclusion References 10. Biochar Magic against Abiotic Stresses 10.1 Introduction 10.1.1 What Is “Biochar”? 10.1.2 Biochar Systems Technology: New Contribution to Safe Environment 10.2 Biochar for Sustainable Crop Growth, Soil Management and Yield Development in Agriculture 10.2.1 Introduction 10.2.2 Biochar Soil Amendment Significance to Farmers and Ranchers 10.2.3 Biochar as an Economic Potential Tool in Agriculture 10.3 Various Abiotic Stresses Threaten Crop Production 10.3.1 Salinity Stress “Impacts on Plant Growth and Development” 10.3.2 Water Stress 10.3.2.1 Drought Stress 10.3.2.2 Flooding Stress 10.3.3 Temperature Stress 10.3.3.1 Heat Stress 10.3.3.2 Cold Stress 10.3.4 Heavy Metal Stress 10.3.5 Mineral Nutrition Imbalance and Constraints to Plant Growth References 11. Biomolecular Intervention in Understanding Plant’s Adaptation to Climate Change 11.1 Introduction 11.2 GMOs and Climate Change 11.3 Heat Tolerance and Transgenics 11.3.1 Molecular Chaperone 11.3.2 Osmolytes Regulation 11.3.3 Antioxidation and Detoxification Pathways 11.3.4 Membrane and Other Metabolic Processes 11.3.5 Transcriptional Factors (TFs) 11.3.6 Signaling Components 11.4 Conclusion References 12. Halophytes Diversity as an Indicator to Saline Environment in Pakistan 12.1 Halophytes 12.2 Diversity of Halophytes at Global Perspectives 12.3 Diversity of Halophytes in Pakistan 12.4 Diversity of Halophytes in Punjab 12.5 Systematic Exploration of Halophytes 12.6 Halophytes as an Indicator of Saline Environment 12.7 Saline Soil References 13. Bacterial Contamination in Food Chain: Sources, Impact and Control 13.1 Introduction 13.1.1 Food Contamination: A Major Future Challenge 13.2 Biofilm Formation in Food Processes 13.2.1 Bacterial Cell Surface 13.2.2 Flagella 13.2.3 Surface Appendages 13.2.4 Outer Layer Polysaccharides 13.3 Bacteria Involved in Food Contamination 13.3.1 Salmonella 13.3.2 Staphylococcus aureus 13.3.3 Bacillus cereus 13.3.4 Clostridium botulinum 13.3.5 Clostridium perfringens 13.3.6 Escherichia coli 13.4 Conclusion References 14. Molecular and Ecological Mechanisms of Grasshopper Food Selection and Habitat Adaptation 14.1 Introduction 14.2 Grasshopper Food Preference and Selection 14.3 Effects of Plant Community on the Performance of Grasshopper 14.4 Effects of Plant Communities on Grasshopper Community Structure 14.5 Habitat Selection and Habitat Adaptation of Grassland Grasshoppers 14.6 Molecular and Ecological Basis of Habitat Adaptation 14.7 Conclusions References 15. Climate Change: A Global Perspective 15.1 Introduction 15.2 Climate Change and Health Problems 15.3 Climate Change and Water Security 15.4 Conclusion References 16. Pollinators Ecology and Management 16.1 Introduction 16.2 Plant Dependence on Animal Pollinators for Seed Production 16.2.1 Biology of Reproduction, Breeding Systems and Evolutionary Trends in Plants 16.2.2 Theory in Angiosperms, Reproductive Structure of Their Populations and Pollinators’ Behavior 16.3 Ecological Reliance of Pollinators on Plant Food Resources 16.4 Impact of Landscape Fragmentation on Pollinators 16.5 Changes in Abundance and Diversity of Pollinators 16.6 Changes in Pollinator Behavior 16.7 Pollinator Sensitivity to Fragmentation References Index