دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Libor Šnobl. Pavel Winternitz
سری: CRM Monograph Series 33
ISBN (شابک) : 0821843559, 9780821843550
ناشر: American Mathematical Society
سال نشر: 2014
تعداد صفحات: 376
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Classification and Identification of Lie Algebras به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طبقه بندی و شناسایی جبرهای دروغ نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هدف این کتاب این است که به عنوان ابزاری برای محققان و دست اندرکارانی باشد که از جبرهای دروغ و گروه های دروغ برای حل مشکلات ناشی از علم و مهندسی استفاده می کنند. نویسندگان به مشکل بیان جبر دروغ به دست آمده در برخی از پایه های دلخواه در مبنای مناسب تری می پردازند که در آن تمام ویژگی های اساسی جبر دروغ به طور مستقیم قابل مشاهده است. این شامل الگوریتم هایی است که تجزیه را به یک مجموع مستقیم انجام می دهند، شناسایی تجزیه رادیکال و لوی، و محاسبه متغیرهای nilradical و Casimir. برای هر الگوریتم مثال هایی آورده شده است. برای جبرهای Lie با ابعاد پایین، این امکان شناسایی کامل جبر Lie داده شده را فراهم می کند. نویسندگان فهرستی نماینده از تمام جبرهای دروغ با ابعاد کمتر یا مساوی 6 همراه با ویژگی های مهم آنها، از جمله متغیرهای Casimir آنها ارائه می دهند. این فهرست به گونهای مرتب شده است که شناسایی را آسان میکند و فقط از ویژگیهای مستقل پایه جبرهای Lie استفاده میکند. آنها همچنین دستههای خاصی از جبرهای دروغ غیرقابل حل و غیرقابل حل را با ابعاد محدود دلخواه توصیف میکنند که طبقهبندی کامل یا جزئی برای آنها وجود دارد و به طور مفصل درباره ساختار و ویژگیهای آنها بحث میکنند. این کتاب بر اساس مطالبی است که قبلاً در مقالات مجلات پراکنده شده بود، بسیاری از آنها توسط یک یا هر دو نویسنده به همراه همکارانشان نوشته شده بودند. خواننده این کتاب باید در سطح مقدماتی با نظریه جبر دروغ آشنا باشد. عناوین این مجموعه به صورت مشترک با Centre de Recherches Mathématiques منتشر شده است.
The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain classes of nilpotent and solvable Lie algebras of arbitrary finite dimensions for which complete or partial classification exists and discuss in detail their construction and properties. The book is based on material that was previously dispersed in journal articles, many of them written by one or both of the authors together with their collaborators. The reader of this book should be familiar with Lie algebra theory at an introductory level. Titles in this series are co-published with the Centre de Recherches Mathématiques.
Front Matter Copyright Contents Preface Acknowledgements Part 1. General Theory Chapter 1. Introduction and Motivation Chapter 2. Basic Concepts 2.1. Definitions 2.2. Levi theorem 2.3. Classification of complex simple Lie algebras 2.4. Chevalley cohomology of Lie algebras Chapter 3. Invariants of the Coadjoint Representation of a Lie Algebra 3.1. Casimir operators and generalized Casimir invariants 3.2. Calculation of generalized Casimir invariants using the infinitesimal method 3.2.1. Formulation of the problem and number of functionally independent solutions. 3.2.2. Method of characteristics for a single PDE. 3.2.3. Solution of the system of PDEs (3.2). 3.3. Calculation of generalized Casimir invariants by the method of moving frames Part 2. Recognition of a Lie Algebra Given by Its Structure Constants Chapter 4. Identification of Lie Algebras through the Use of Invariants 4.1. Elementary invariants 4.2. More sophisticated invariants Chapter 5. Decomposition into a Direct Sum 5.1. General theory and criteria 5.2. Algorithm 5.3. Examples Chapter 6. Levi Decomposition. Identification of the Radicaland Levi Factor 6.1. Original algorithm 6.2. Modified algorithm 6.3. Examples Chapter 7. The Nilradical of a Lie Algebra 7.1. General theory 7.2. Algorithm 7.3. Examples 7.4. Identification of the nilradical using the Killing form Part 3. Nilpotent, Solvable and Levi Decomposable Lie Algebras Chapter 8. Nilpotent Lie Algebras 8.1. Maximal Abelian ideals and their extensions 8.2. Classification of low-dimensional nilpotent Lie algebras Chapter 9. Solvable Lie Algebras and Their Nilradicals 9.1. General structure of a solvable Lie algebra 9.2. General procedure for classifying all solvable Lie algebras with a given nilradical 9.3. Upper bound on the dimension of a solvable extension of a given nilradical 9.4. Particular classes of nilradicals and their solvable extensions 9.5. Vector fields realizing bases of the coadjoint representation of a solvable Lie algebra Chapter 10. Solvable Lie Algebras with Abelian Nilradicals 10.1. Basic structural theorems 10.2. Decomposability properties of the solvable Lie algebras 10.2.1. Nilradicals of minimal dimension. 10.3. Solvable Lie algebras with centers of maximal dimension 10.4. Solvable Lie algebras with one nonnilpotent element and an n-dimensional Abelian nilradical 10.5. Solvable Lie algebras with two nonnilpotent elements and n-dimensional Abelian nilradical 10.6. Generalized Casimir invariants of solvable Lie algebras with Abelian nilradicals 10.6.1. General form of the generalized Casimir invariants and their number. 10.6.2. Diagonal structure matrices. 10.6.3. Casimir invariants in the case f = 1. 10.6.4. Casimir invariants for low-dimensional nilradicals. 10.6.5. Summary. Chapter 11. Solvable Lie Algebras with Heisenberg Nilradical 11.1. The Heisenberg relations and the Heisenberg algebra 11.2. Classification of solvable Lie algebras with nilradical h(m) 11.2.1. Basic classification theorem. 11.3. The lowest dimensional case m = 1 11.4. The case m = 2 11.5. Generalized Casimir invariants Chapter 12. Solvable Lie Algebras with Borel Nilradicals 12.1. Outer derivations of nilradicals of Borel subalgebras 12.2. Solvable extensions of the Borel nilradicals NR(b(g)) 12.2.1. Solvable extensions of the Borel nilradicals of maximal dimension. 12.2.2 Solvable extensions of the split real form of the nilradical NR(b(g)) 12.2.3. Solvable extensions of the Borel nilradicals of less than maximal dimension. 12.2.4. Solvable extensions of dimension n_{NR}+1. 12.3. Solvable Lie algebras with triangular nilradicals 12.3.1. The structure of the algebras of strictly upper triangular matrices and their derivations. 12.3.2. Illustration of the procedure for low dimensions. 12.4. Casimir invariants of nilpotent and solvable triangular Lie algebras 12.4.1. Invariants of nilpotent triangular Lie algebras. 12.4.2. Invariants of the solvable triangular Lie algebras. 12.4.3. Casimir invariants of solvable extensions of t(4). 12.4.4. General results. 12.4.5. Conclusions. Chapter 13. Solvable Lie Algebras with Filiform and Quasifiliform Nilradicals 13.1. Classification of solvable Lie algebras with the model filiform nilradical n_{n,1} 13.1.1. Nilpotent algebra n_{n,1}. 13.1.2. Construction of solvable Lie algebras with the nilradical n_{n,1}. 13.1.3. Standard forms of solvable Lie algebras with the nilradical n_{n,1}. 13.1.4. The generalized Casimir invariants of n_{n,1} and of its solvable extensions. 13.2. Classification of solvable Lie algebras with the nilradical n_{n,2} 13.2.1. Nilpotent algebra n_{n,2} and its structure. 13.2.2. Construction of solvable Lie algebras with the nilradical n_{n,2}. 13.2.3. Generalized Casimir invariants of n_{n,2} and of its solvable extension. 13.3. Solvable Lie algebras with other filiform nilradicals 13.4. Example of an almost filiform nilradical 13.4.1. Automorphisms and derivations of the nilradical n_{n,3}. 13.4.2. Construction of solvable Lie algebras with the nilradical n_{n,3}. 13.4.3. Dimension n = 6. 13.4.4. Dimension n = 5. 13.5. Generalized Casimir invariants of nn,3 and of its solvable extensions Chapter 14. Levi Decomposable Algebras 14.1. Levi decomposable algebras with a nilpotent radical 14.2. Levi decomposable algebras with nonnilpotent radicals 14.3. Levi decomposable algebras of low dimensions 14.3.1. Levi extensions of Abelian radicals. 14.3.2. Levi extensions of non-Abelian radicals with Abelian nilradicals. 14.3.3. Levi decomposable algebras with non-Abelian nilradicals. Part 4. Low-Dimensional Lie Algebras Chapter 15. Structure of the Lists ofLow-Dimensional Lie Algebras 15.1. Ordering of the lists 15.2. Computer-assisted identification of a given Lie algebra Chapter 16. Lie Algebras up to Dimension 3 16.1. One-dimensional Lie algebra 16.2. Solvable two-dimensional Lie algebra with the nilradical n_{1,1} 16.3. Nilpotent three-dimensional Lie algebra 16.4. Solvable three-dimensional Lie algebras with the nilradical 2n_{1,1} 16.5. Simple three-dimensional Lie algebras Chapter 17. Four-Dimensional Lie Algebras 17.1. Nilpotent four-dimensional Lie algebra 17.2. Solvable four-dimensional algebras with the nilradical 3n_{1,1} 17.3. Solvable four-dimensional Lie algebras with the nilradical n_{3,1} 17.4. Solvable four-dimensional Lie algebras with the nilradical 2n_{1,1} Chapter 18. Five-Dimensional Lie Algebras 18.1. Nilpotent five-dimensional Lie algebras 18.2. Solvable five-dimensional Lie algebras with the nilradical 4n_{1,1} 18.3. Solvable five-dimensional Lie algebras with the nilradical n_{3,1} ⊕ n_{1,1} 18.4. Solvable five-dimensional Lie algebras with the nilradical n_{4,1} 18.5. Solvable five dimensional Lie algebras with the nilradical 3n_{1,1} 18.6. Solvable five-dimensional Lie algebras with the nilradical n_{3,1} Chapter 19. Six-Dimensional Lie Algebras 19.1. Nilpotent six-dimensional Lie algebras 19.2. Solvable six-dimensional Lie algebras with the nilradical 5n_{1,1} 19.3. Solvable six-dimensional Lie algebras with the nilradical n_{3,1} ⊕ 2n_{1,1} 19.4. Solvable six-dimensional Lie algebras with the nilradical n_{4,1} ⊕ n_{1,1} 19.5. Solvable six-dimensional Lie algebras with the nilradical n_{5,1} 19.6. Solvable six-dimensional Lie algebras with the nilradical n_{5,2} 19.7. Solvable six-dimensional Lie algebras with the nilradical n_{5,3} 19.8. Solvable six-dimensional Lie algebras with the nilradical n_{5,4} 19.9. Solvable six-dimensional Lie algebras with the nilradical n_{5,5} 19.10. Solvable six-dimensional Lie algebra with the nilradical n_{5,6} 19.11. Solvable six-dimensional Lie algebras with the nilradical 4n_{1,1} 19.12. Solvable six-dimensional Lie algebras with the nilradical n_{3,1} ⊕ n_{1,1} 19.13. Solvable six-dimensional Lie algebra with the nilradical n_{4,1} Bibliography Index Book Presentation by Authors The monograph: Classification and Identification of Lie Algebras Why to be interested in identification and classification of Lie algebras? What can be found in our book Conclusions