دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Kulp. Christopher W., Pagonis. Vasilis, سری: ISBN (شابک) : 2020021514, 9781351024389 ناشر: Taylor & Francis Group سال نشر: 2020 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Classical Mechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک کلاسیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Contents Preface Chapter 1: The Foundations of Motion and Computation 1.1 THE WORLD OF PHYSICS 1.2 THE BASICS OF CLASSICAL MECHANICS 1.2.1 The Basic Descriptors of Motion 1.2.1.1 Position and Displacement 1.2.1.2 Velocity 1.2.1.3 Acceleration 1.2.2 Mass and Force 1.2.2.1 Mass 1.2.2.2 Force 1.3 NEWTON’S LAWS OF MOTION 1.3.1 Newton’s First Law 1.3.2 Newton’s second law 1.3.3 Newton’s third law 1.4 REFERENCE FRAMES 1.5 COMPUTATION IN PHYSICS 1.5.1 The Use of Computation in Physics 1.5.2 Different Computational Tools 1.5.3 Some Warnings 1.6 CLASSICAL MECHANICS IN THE MODERN WORLD 1.7 CHAPTER SUMMARY 1.8 END-OF-CHAPTER PROBLEMS Chapter 2: Single-Particle Motion in One Dimension 2.1 EQUATIONS OF MOTION 2.2 ORDINARY DIFFERENTIAL EQUATIONS 2.3 CONSTANT FORCES 2.4 TIME-DEPENDENT FORCES 2.5 AIR RESISTANCE AND VELOCITY-DEPENDENT FORCES 2.6 POSITION-DEPENDENT FORCES 2.7 NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS 2.8 CHAPTER SUMMARY 2.9 END-OF-CHAPTER PROBLEMS Chapter 3: Motion in Two and Three Dimensions 3.1 POSITION, VELOCITY, AND ACCELERATION IN CARTESIAN COORDI-NATE SYSTEMS 3.2 VECTOR PRODUCTS 3.2.1 The Dot Product 3.2.2 The Cross Product 3.3 POSITION, VELOCITY, AND ACCELERATION IN NON-CARTESIAN COORDINATE SYSTEMS 3.3.1 Polar Coordinates 3.3.2 Position, Velocity, and Acceleration in Cylindrical Coordinates 3.3.3 Position, Velocity, and Acceleration in Spherical Coordinates 3.4 THE GRADIENT, DIVERGENCE, AND CURL 3.4.1 The Gradient 3.4.2 The Divergence 3.4.3 The Curl 3.4.4 Second Derivatives with the Del Operator 3.5 CHAPTER SUMMARY 3.6 END-OF-CHAPTER PROBLEMS Chapter 4: Momentum, Angular Momentum, and Multiparticle Systems 4.1 CONSERVATION OF MOMENTUM AND NEWTON’S THIRD LAW 4.2 ROCKETS 4.3 CENTER OF MASS 4.4 NUMERICAL INTEGRATION AND THE CENTER OF MASS 4.4.1 Trapezoidal Rule 4.4.2 Simpson’s Rule 4.5 MOMENTUM OF A SYSTEM OF MULTIPLE PARTICLES 4.6 ANGULAR MOMENTUM OF A SINGLE PARTICLE 4.7 ANGULAR MOMENTUM OF MULTIPLE PARTICLES 4.8 CHAPTER SUMMARY 4.9 END-OF-CHAPTER PROBLEMS Chapter 5: Energy 5.1 WORK AND ENERGY IN ONE-DIMENSIONAL SYSTEMS 5.2 POTENTIAL ENERGY AND EQUILIBRIUM POINTS IN ONE-DIMENSIONAL SYSTEMS 5.3 WORK AND LINE INTEGRALS 5.4 THE WORK-KINETIC ENERGY THEOREM, REVISITED 5.5 CONSERVATIVE FORCES AND POTENTIAL ENERGY 5.6 ENERGY AND MULTIPARTICLE SYSTEMS 5.7 CHAPTER SUMMARY 5.8 END-OF-CHAPTER PROBLEMS Chapter 6: Harmonic Oscillations 6.1 DIFFERENTIAL EQUATIONS 6.2 THE SIMPLE HARMONIC OSCILLATOR 6.2.1 The Equation of Motion of the Simple Harmonic Oscillator 6.2.2 Potential and Kinetic Energy in Simple Harmonic Motion 6.2.3 The Simple Plane Pendulum as an Example of a Harmonic Oscillator 6.3 NUMERICAL SOLUTIONS USING THE EULER METHOD FOR HARMONIC OSCILLATIONS 6.4 DAMPED HARMONIC OSCILLATOR 6.4.1 Overdamped Oscillations 6.4.2 Underdamped Oscillation 6.4.3 Critically Damped Oscillations 6.5 ENERGY IN DAMPED HARMONIC MOTION 6.6 FORCED HARMONIC OSCILLATOR 6.7 ENERGY RESONANCE AND THE QUALITY FACTOR FOR DRIVEN OSCILLATIONS 6.8 ELECTRICAL CIRCUITS 6.9 PRINCIPLE OF SUPERPOSITION AND FOURIER SERIES 6.9.1 The Principle of Superposition 6.9.2 Fourier Series 6.9.3 Example of Superposition Principle and Fourier Series 6.10 PHASE SPACE 6.11 CHAPTER SUMMARY 6.12 END-OF-CHAPTER PROBLEMS Chapter 7: The Calculus of Variations 7.1 THE MOTIVATION FOR LEARNING THE CALCULUS OF VARIATIONS 7.2 THE SHORTEST DISTANCE BETWEEN TWO POINTS—SETTING UP THE CALCULUS OF VARIATIONS 7.3 THE FIRST FORM OF THE EULER EQUATION 7.4 THE SECOND FORM OF THE EULER EQUATION 7.5 SOME EXAMPLES OF PROBLEMS SOLVED USING THE CALCULUS OF VARIATIONS 7.5.1 The Brachistochrone Problem 7.5.2 Geodesics 7.5.3 Minimum Surface of Revolution 7.6 MULTIPLE DEPENDENT VARIABLES 7.7 CHAPTER SUMMARY 7.8 END-OF-CHAPTER PROBLEMS Chapter 8: Lagrangian and Hamiltonian Dynamics 8.1 AN INTRODUCTION TO THE LAGRANGIAN 8.2 GENERALIZED COORDINATES AND DEGREES OF FREEDOM 8.3 HAMILTON’S PRINCIPLE 8.4 SOME EXAMPLES OF LAGRANGIAN DYNAMICS 8.5 NUMERICAL SOLUTIONS TO ODE’S USING THE FOURTH-ORDER RUNGE-KUTTA METHOD 8.6 CONSTRAINT FORCES AND LAGRANGE’S EQUATION WITH UNDE-TERMINED MULTIPLIERS 8.7 CONSERVATION THEOREMS AND THE LAGRANGIAN 8.7.1 Conservation of Momentum 8.7.2 Conservation of Energy 8.8 HAMILTONIAN DYNAMICS 8.9 ADDITIONAL EXPLORATIONS INTO THE HAMILTONIAN 8.10 CHAPTER SUMMARY 8.11 END-OF-CHAPTER PROBLEMS Chapter 9: Central Forces and Planetary Motion 9.1 CENTRAL FORCES 9.1.1 Central Forces and the Conservation of Energy 9.1.2 Central Forces and the Conservation of Angular Momentum 9.2 THE TWO-BODY PROBLEM 9.3 EQUATIONS OF MOTION FOR THE TWO-BODY PROBLEM 9.4 PLANETARY MOTION AND KEPLER’S FIRST LAW 9.5 ORBITS IN A CENTRAL FORCE FIELD 9.6 KEPLER’S LAWS OF PLANETARY MOTION 9.6.1 Kepler’s First Law 9.6.2 Kepler’s Second Law 9.6.3 Kepler’s Third Law 9.7 THE PLANAR CIRCULAR RESTRICTED THREE-BODY PROBLEM 9.8 CHAPTER SUMMARY 9.9 END-OF-CHAPTER PROBLEMS Chapter 10: Motion in Noninertial Reference Frames 10.1 MOTION IN A NONROTATING ACCELERATING REFERENCE FRAME 10.2 ANGULAR VELOCITY AS A VECTOR 10.3 TIME DERIVATIVES OF VECTORS IN ROTATING COORDINATE FRAMES 10.4 NEWTON’S SECOND LAW IN A ROTATING FRAME 10.4.1 The Centrifugal Force 10.4.2 The Coriolis Force 10.5 FOUCAULT PENDULUM 10.6 PROJECTILE MOTION IN A NONINERTIAL FRAME 10.7 CHAPTER SUMMARY 10.8 END-OF-CHAPTER PROBLEMS Chapter 11: Rigid Body Motion 11.1 ROTATIONAL MOTION OF PARTICLES AROUND A FIXED AXIS 11.2 REVIEW OF ROTATIONAL PROPERTIES FOR A SYSTEM OF PARTICLES 11.2.1 The Center of Mass 11.2.2 Momentum of a System of Particles 11.2.3 Angular Momentum of a System of Particles 11.2.4 Work and Kinetic Energy for a System of Particles 11.3 THE MOMENT OF INERTIA TENSOR 11.4 KINETIC ENERGY AND THE INERTIA TENSOR 11.5 INERTIA TENSOR IN DIFFERENT COORDINATE SYSTEMS—THE PARALLEL AXIS THEOREM 11.6 PRINCIPAL AXES OF ROTATION 11.7 PRECESSION OF A SYMMETRIC SPINNING TOP WITH ONE POINT FIXED AND EXPERIENCING A WEAK TORQUE 11.8 RIGID BODY MOTION IN THREE DIMENSIONS AND EULER’S EQUATIONS 11.9 THE FORCE-FREE SYMMETRIC TOP 11.10 CHAPTER SUMMARY 11.11 END-OF-CHAPTER PROBLEMS Chapter 12: Coupled Oscillations 12.1 COUPLED OSCILLATIONS OF A TWO-MASS THREE-SPRING SYSTEM 12.1.1 The Equations of Motion—Numerical Solution 12.1.2 Equal Masses and Identical Springs: The Normal Modes 12.1.3 The General Case: Linear Combination of Normal Modes 12.2 NORMAL MODE ANALYSIS OF THE TWO-MASS THREE-SPRING SYSTEM 12.2.1 Equal Masses and Identical Springs—Analytical Solution 12.2.2 Solving the Two-Mass and Three-Spring System as an Eigenvalue Problem 12.3 THE DOUBLE PENDULUM 12.3.1 The Lagrangian and Equations of Motion—Numerical Solutions 12.3.2 Identical Masses and Lengths—Analytical Solutions 12.3.3 The Double Pendulum as an Eigenvector/Eigenvalue Problem 12.4 GENERAL THEORY OF SMALL OSCILLATIONS AND NORMAL COOR-DINATES 12.4.1 The Lagrangian for Small Oscillations Around an Equilibrium Position 12.4.2 The Equations of Motion for Small Oscillations Around an Equilibrium Point 12.4.3 Normal Coordinates 12.5 CHAPTER SUMMARY 12.6 END-OF-CHAPTER PROBLEMS Chapter 13: Nonlinear Systems 13.1 LINEAR VS. NONLINEAR SYSTEMS 13.2 THE DAMPED HARMONIC OSCILLATOR, REVISITED 13.3 FIXED POINTS AND PHASE PORTRAITS 13.3.1 The Simple Plane Pendulum, Revisited 13.3.2 The Double-Well Potential, Revisited 13.3.3 Damped Double-Well 13.3.4 Bifurcations of Fixed Points 13.4 LIMIT CYCLES 13.4.1 The Duffing Equation 13.4.2 Limit Cycles and Period Doubling Bifurcations 13.5 CHAOS 13.5.1 Chaos and Initial Conditions 13.5.2 Lyapunov Exponents 13.6 A FINAL WORD ON NONLINEAR SYSTEMS 13.7 CHAPTER SUMMARY 13.8 END-OF-CHAPTER PROBLEMS Bibliography Index