دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Karan S. Surana
سری:
ISBN (شابک) : 0367612968, 9780367612962
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 536
[532]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Classical Continuum Mechanics (Applied and Computational Mechanics) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک پیوسته کلاسیک (مکانیک کاربردی و محاسباتی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پایههای مکانیک پیوسته و نظریههای سازنده مواد را با استفاده از نمادهای قابل درک بررسی میکند. این کتاب که با استفاده از زبان روشن برای کشف این حوزه ریاضی سخت مهندسی مکانیک نوشته شده است، راهنمای کاملی برای مکانیک پیوسته ارائه می دهد.
این کتاب که برای نسخه دوم بهروزرسانی شده است، مطالب جدیدی را با هدف تعریف مکانیک پیوسته کلاسیک، بحث در مورد محدودیتهای آن، و نشان دادن مفاهیم کلیدی اضافه میکند. جدید در ویرایش دوم، فصلی است در مورد موضوعات پیشرفته در مکانیک پیوسته کلاسیک، تعریف و نشان دادن نوع فیزیک که می تواند تحت حساب تغییرات و روش های انرژی در نظر گرفته شود. با تأکید ویژه بر هر دو نماد ماتریسی و برداری، مطالب را با استفاده از این نمادها در صورت امکان ارائه می دهد. این کتاب با تعیین ماهیت کششی معیارهای کرنش و تأثیر چرخش قاب ها بر معیارهای مختلف، معنای فیزیکی اجزای کرنش ها را نشان می دهد، تجزیه قطبی تغییر شکل را ارائه می دهد و تعاریف و معیارهای تنش را ارائه می دهد.
این کتاب برای دانشجویان تحصیلات تکمیلی جالب خواهد بود، با هدف آماده سازی آنها برای تحقیقات پیشرفته یا برای کاربردهای پیشرفته مکانیک پیوسته. علاوه بر این، نسخه جدید شامل راهنمای راهحلها، کمک به اساتید و کسانی است که به دنبال خودآموزی هستند.
This book explores the foundation of continuum mechanics and constitutive theories of materials using understandable notations. Written using clear language to explore this mathematically demanding area of mechanical engineering, the book provides a thorough guide to continuum mechanics.
Updated throughout for the second edition, the book adds new material aimed at defining classical continuum mechanics, discussing its limitations, and illustrating key concepts. New to the second edition is a chapter on advanced topics in classical continuum mechanics, defining and illustrating the type of physics that can be considered under calculus of variations and energy methods. Placing special emphasis on both matrix and vector notations, it presents material using these notations whenever possible. Establishing the tensorial nature of strain measures and influence of rotation of frames on various measures, the book illustrates the physical meaning of the components of strains, presents the polar decomposition of deformation, and provides the definitions and measures of stress.
The book will be of interest to graduate students, with the objective of preparing them for advanced research or for advanced applications of continuum mechanics. Additionally, the new edition includes a solutions manual, aiding lecturers and those pursuing self-study.
Cover Half Title Series Page Title Page Copyright Page Dedication Contents PREFACE ABOUT THE AUTHOR LIST OF ABBREVIATIONS 1. INTRODUCTION 2. CONCEPTS AND MATHEMATICAL PRELIMINARIES 2.1. Introduction 2.2. Notations 2.2.1. Einstein notations 2.2.2. Index notations and Kronecker delta 2.2.3. Vector and matrix notations 2.2.4. Remarks 2.3. Permutation tensor 2.4. -identity 2.5. Operations using vector, matrix and Einstein notations 2.5.1. Multiplication 2.5.2. Substitution 2.5.3. Factoring 2.5.4. Contraction (or trace) 2.6. Reference frame and reference frame transformation 2.7. Coordinate frames and transformations 2.7.1. Cartesian frame and orthogonal coordinate 2.7.2. Curvilinear coordinates (or frame) 2.8. Curvilinear frames, covariant and contravariant 2.8.1. Covariant basis 2.8.2. Contravariant basis 2.8.3. Alternate way to visualize covariant and contravariant bases ~gi, ~gi 2.9. Scalars, vectors and tensors 2.10. Coordinate transformations, definitions and operations 2.10.1. Coordinate transformation T 2.10.2. Induced transformations 2.10.3. Isomorphism between coordinate transformations and induced transformations 2.10.4. Transformations by covariance and contravariance 2.10.5. The tensor concept: Covariant and contravariant tensors 2.11. Tensors in three-dimensional x-frame, tensor operations, orthogonal coordinate transformations and invariance 2.11.1. Tensors in Cartesian x-frame 2.11.2. Tensor operations 2.11.3. Transformations of tensors dened in orthogonal frames due to orthogonal coordinate transformation 2.11.4. Invariants of tensors 2.11.5. Hamilton-Cayley theorem 2.11.6. Differential calculus of tensors 2.12. Some useful relations 2.13. Summary 3. KINEMATICS OF MOTION, DEFORMATION AND THEIR MEASURES 3.1. Description of motion 3.2. Material particle displacements 3.3. Lagrangian, Eulerian descriptions and descriptions in fuid mechanics 3.3.1. Lagrangian or referential description of motion 3.3.2. Eulerian or spatial description of motion 3.3.3. Descriptions in fuid mechanics 3.3.4. Notations 3.4. Material derivative 3.4.1. Material derivative in Lagrangian or referential description 3.4.2. Material derivative in Eulerian or spatial description 3.5. Acceleration of a material particle 3.5.1. Lagrangian or referential description 3.5.2. Eulerian or spatial description 3.6. Deformation Gradient Tensor 3.7. Continuous deformation of matter, restrictions on the description of motion 3.8. Change of description, co- and contra-variant measures 3.9. Notations for covariant and contravariant measures 3.10. Deformation, measures of length and change 3.10.1. Covariant measures of length and change in length 3.10.2. Contravariant measures of length and change in length 3.11. Covariant and contravariant measures of nite strain in Lagrangian and Eulerian descriptions 3.11.1. Covariant measures of finite strains 3.11.2. Contravariant measures of finite strains 3.12. Changes in strain measures due to rigid rotation of frames 3.12.1. Change in covariant Lagrangian descriptions of strain when xi are changed to x0 i due to rigid rotation 3.12.2. Changes in contravariant Eulerian measures of strains when xi are changed to x0 i due to rigid rotation 3.12.3. Change in covariant Lagrangian measures of strain when xi are changed to x0 i by rigid rotation [ Q] 3.12.4. Changes in Eulerian measures of strain when xi are changed to x0 i by rigid rotation [Q] 3.13. Invariants of strain tensors 3.14. Expanded form of strain tensors 3.14.1. Green's strain measure: ["[0]] 3.14.2.Almansi strain measure : ["[0]] 3.15. Physical meaning of strains 3.15.1. Extensions and stretches parallel to ox1; ox2; ox3 axes in the x-frame: covariant measure of strain in Lagrangian description using "[0], Green's strain in Lagrangian description 3.15.2. Extensions and stretches parallel to x-frame axes using ["[0]] 3.15.3. Angles between the bers or material lines 3.16. Small deformation, small strain deformation physics 3.16.1. Green's strain: Lagrangian description 3.16.2. Almansi strain tensor: Eulerian description 3.17. Additive and multiplicative decompositions of deformation gradient tensor [J] 3.17.1. Additive decomposition of [J] 3.17.2. Multiplicative decomposition of [J]: Polar decomposition into stretch and rotation tensor 3.17.3. Strain measures in terms of [Sr], [Sl] and [R] 3.18. Invariants of [C[0]], [B[0]], [Sr] and [Sl] in terms of principal stretches of [Sr] and [Sl] . 3.18.1. Principal stretches of [Sr] and [Sl] 3.18.2. Principal invariants of [C[0]] in terms of ri 3.18.3. Principal Invariants of [Sr] 3.18.4. Principal invariants of [B[0]] in terms of li 3.18.5. Principal Invariants of [Sl] 3.19. Deformation of areas and volumes 3.19.1. Areas 3.19.2. Volumes 3.19.3.Integral form of fdAg over @V 3.20. Summary 4. DEFINITIONS AND MEASURES OF STRESSES 4.1. Concept of stress 4.2. Cut Principle of Cauchy 4.3. Deffinition of stress on area 4.4. Cauchy stress tensor 4.4.1. Force balance 4.4.2. Moment of Forces 4.4.3. Cauchy principle 4.5. Stress measures: finite deformation, finite strain 4.5.1. Contravariant Cauchy stress tensor ˙(0) and ˙(0) in Lagrangian and Eulerian descriptions 4.5.2. Covariant Cauchy stress tensor in ˙(0) and ˙(0) in Eulerian and Lagrangian descriptions 4.5.3. Mixed stress tensors: Jaumann stress tensor 4.6. Contravariant Second Piola-Kirchhoff stress tensor ˙[0] or ˙[0] 4.7. Contravariant First Piola-Kirchhoff or Lagrange stress tensor ˙ 4.8. Covariant Second Piola-Kirchhoff stress tensor ˙[0] or ˙[0] 4.9. General Remarks 4.10. Summary of stress measures 4.10.1. Cauchy stress tensors 4.10.2. Jaumann stress tensors 4.10.3. Second Piola-Kirchhoff stress tensors 4.10.4. First Piola-Kirchhoff stress tensor 4.11. Conjugate strain measures 4.12. Relations between different stress measures and some other useful relations 4.13. Summary 5. RATES, CONVECTED TIME DERIVATIVES AND OBJECTIVITY 5.1. Rate of deformation 5.1.1. Lagrangian description 5.1.2. Eulerian description 5.2. Additive decomposition of velocity gradient tensor 5.3. Interpretation of the components of [D] 5.3.1. Diagonal components of [D] 5.3.2. Off diagonal components of [D]: physical interpretation 5.4. Rate of change or material derivative of strain tensors [C[0]] and ["[0]] 5.5. Physical meaning of spin tensor [ W ] 5.6. Vorticity vector and vorticity 5.7. Rate of change of [J], i.e., material derivative of [J] 5.8. Rate of change of [ J], i.e., material derivative of [ J] 5.9. Rate of change of det[J], i.e material derivative of jJj 5.10. Rate of change of det[ J], i.e., material derivative of det[ J] 5.11. Rate of change of volume, i.e., material derivative of volume 5.12. Rate of change of area: material derivative of area 5.13. Convected time derivatives of stress and strain tensors 5.13.1. Stress and strain measures for convected time derivatives 5.13.2. Convected time derivatives of the Cauchy stress tensor: compressible matter 5.13.3. Convected time derivatives of the Cauchy stress tensor: incompressible matter 5.13.4. Remarks 5.13.5. Convected time derivatives of the strain tensors 5.14. Conjugate pairs of convected time derivatives of stress and strain tensors 5.15. Objective tensors and objective rates 5.15.1. Galilean transformation: tensors 5.15.2. Euclidean or Non-Galilean transformations: tensors 5.15.3. Objective rates 5.15.4. Remarks 5.16. Summary 6. CONSERVATION AND BALANCE LAWS IN EULERIAN DESCRIPTION 6.1. Introduction 6.2. Localization theorem 6.3. Mass density 6.4. Conservation of mass: CM 6.5. Transport theorem 6.5.1. Approach I 6.5.2. Approach II 6.5.3. Continued development of transport theorem 6.6. Conservation of mass: CM 6.6.1. Integral form of CM 6.6.2. Differential form of CM 6.7. Kinematics of continuous media: BLM 6.7.1. Preliminary considerations 6.7.2. Derivation of equations of BLM 6.7.3. Approach I: Integral and differential forms of BLM 6.7.4. Approach II 6.8. Kinematics of continuous media: BAM 6.8.1. Integral form of BAM 6.8.2. Differential form of BAM 6.9. First law of thermodynamics: FLT 6.9.1. Integral form of FLT 6.9.2. Differential form of FLT 6.10. Second law of thermodynamics: SLT 6.10.1. Integral form of SLT 6.10.2. Differential form of SLT 6.11. Summary of mathematical model from CBL 6.11.1. Differential form of the CBL 6.11.2. Integral form of the CBL 6.12. Summary 7. CONSERVATION AND BALANCE LAWS IN LAGRANGIAN DESCRIPTION 7.1. Introduction 7.2. Mathematical model for deforming continua in Lagrangian description 7.3. Conservation of mass: (CM) 7.3.1. Integral form of CM 7.3.2. Differential form of CM 7.4. Balance of linear momenta: (BLM) 7.4.1. Differential form of BLM 7.5. Balance of angular momenta: (BAM) 7.5.1. Differential form of BAM 7.6. First law of thermodynamics: (FLT) 7.6.1. Differential form of the FLT 7.6.2. Rate of mechanical work conjugate pairs in the energy equation (differential form) 7.6.3. Energy equation in equivalent rate of work conjugate measures 7.7. Second law of thermodynamics: (SLT) 7.7.1. Differential form of SLT 7.8. Second law of thermodynamics using Gibbs potential (differential form) 7.8.1. Using ˙[0] and "[0] as conjugate pair 7.8.2. Using ˙[0] and C[0] as conjugate pair 7.9. Summary of differential form of CBL 7.10. Summary 8. CONSTITUTIVE THEORIES 8.1. Introduction 8.2. Axioms of constitutive theory 8.3. Approaches of deriving constitutive theories 8.3.1. Thermodynamic approach 8.3.2. Other approaches (not strictly thermodynamic) 8.4. Considerations in the constitutive theories 8.4.1. Common deformation physics 8.5. Thermodynamic approach of deriving constitutive theories 8.5.1. Entropy inequality in Eulerian description 8.5.2. Additive decomposition of Cauchy stress tensor (0) 8.5.3. Constitutive tensors, their argument tensors and SLT 8.5.4. Constitutive theory for equilibrium Cauchy stress tensor (0) e ˙ (volumetric deformation physics): Eulerian description, Helmholtz free energy density 8.5.5. Constitutive theories for equilibrium stress (0) e˙ (volumetric deformation): Lagrangian description 8.5.6. Constitutive theories for equilibrium contravariant second Piola-Kirchho stress tensor e˙[0] 8.6. Representation Theorem 8.6.1. Def: Representation theorem 8.6.2. Constitutive theory for a symmetric tensor of rank two 8.6.3. Constitutive variable is a tensor of rank one 8.7. Other approaches of deriving constitutive theories 8.8. Summary 9. CONSTITUTIVE THEORIES FOR THERMOELASTIC SOLIDS 9.1. Introduction 9.2. Thermodynamic approach 9.2.1. Finite deformation, nite strain, compressible, non-isothermal 9.2.2. Finite deformation, nite strain, compressible, isothermal: reversible deformation 9.2.3. Finite deformation, nite strain, incompressible, non-isothermal 9.2.4. Finite deformation, nite strain, incompressible, isothermal: reversible deformation 9.2.5. Small deformation, small strain 9.3. Other approaches of deriving constitutive theories (not necessarily thermodynamic) 9.3.1. Constitutive theory for ˙[0] using : reversible 9.3.2. Constitutive theory for ˙[0] using strain energy density ˇ 9.3.3. Constitutive theory for ˙[0] using ˇ = ˇ("[0]) and Taylor series expansion: non-isotropic, non-homogeneous solid continua 9.3.4. Constitutive theory for ˙ using ˇ("): small deformation, small strain 9.4. Constitutive theories for the heat vector 9.4.1. Constitutive theory for q using entropy inequality 9.4.2. Constitutive theories for q using representation theorem 9.5. General remarks 9.6. Summary 10. CONSTITUTIVE THEORIES FOR THERMOVISCOELASTIC SOLIDS WITHOUT MEMORY 10.1. Introduction 10.2. Finite deformation, nite strain 10.2.1. Equilibrium stress tensor e˙[0] 10.2.2. Deviatoric stress d˙[0] 10.3. Small strain, small deformation 10.3.1.Equilibrium stress tensor e 10.3.2. Deviatoric stress d˙ 10.4. Kelvin-Voigt Model 10.5. 1D wave propagation in viscoelastic solid continua 10.5.1. Alternate phenomenological model for dissipation 10.5.2. Model Problem: Numerical Studies 10.6. Constitutive theories for heat vector q 10.7. General remarks 10.8. Summary 11. CONSTITUTIVE THEORIES FOR THERMOVISCOELASTIC SOLIDS WITH MEMORY 11.1. Introduction 11.2. Finite deformation, nite strain 11.2.1. Constitutive theory for d˙[0] 11.3. Small deformation, small strain 11.3.1. Constitutive theory for d˙ 11.4. Memory modulus or relaxation modulus 11.5. Zener constitutive model 11.6. Model problem: numerical studies 11.7. Constitutive theories for heat vector q 11.8. General remarks 11.9. Summary 12. CONSTITUTIVE THEORIES FOR THERMOVISCOUS FLUIDS 12.1. Introduction 12.2. Preliminary considerations 12.3. Constitutive theory for equilibrium Cauchy stress 12.4. Constitutive theory for deviatoric Cauchy stress 12.4.1. A constitutive theory of order one (n = 1) for (0) d ˙: Newtonian and generalized Newtonian fluids 12.4.2. Linear constitutive theory of order n for (0) d 12.4.3. Linear constitutive theory of order one (n = 1): Newtonian and generalized Newtonian fluids 12.4.4. Generalized Newtonian uids: variable transport properties 12.5. Constitutive theory for heat vector, Eulerian description 12.5.1. Constitutive theory for q using entropy inequality 12.5.2. Constitutive theory for q using representation theorem 12.6. General remarks 12.7. Summary 13. CONSTITUTIVE THEORIES FOR THERMOVISCOELASTIC FLUIDS 13.1. Introduction 13.2. Preliminary considerations 13.3. Considerations in the constitutive theories 13.4. Constitutive theory for equilibrium stress (0)e 13.5. Constitutive theory for deviatoric stress (0)d ˙ 13.5.1. Simplified constitutive theories for (m)d ˙: m = 1, n = 1 13.5.2. Maxwell constitutive model 13.5.3. Giesekus Constitutive Model 13.5.4. Discussion on the Giesekus constitutive model derived here and the constitutive model used currently 13.5.5. Simplified constitutive theory for deviatoric Cauchy stress tensor d˙(0): m = 1, n = 2 13.5.6. Oldroyd-B constitutive model (m = 1, n = 2) 13.5.7. A single constitutive theory for dilute and dense polymeric fluids (m = 1, n = 2) 13.6. Constitutive theory for heat vector 13.7. Numerical studies using Giesekus constitutive model 13.7.1. Model Problem 1: fully developed ow between parallel plates 13.7.2. Model Problem 2: fully developed ow between parallel plates using 2D formulation 13.8. General remarks 13.9. Summary 14. CONSTITUTIVE THEORIES FOR THERMO HYPO-ELASTIC SOLIDS 14.1. Introduction 14.2. Preliminary considerations 14.3. Constitutive theory for equilibrium Cauchy stress (0)e ˙ 14.4. Constitutive theory for deviatoric Cauchy stress 14.4.1. Linear constitutive theory of order n for (1) d ˙ 14.4.2. Linear constitutive theory of order one (n = 1) 14.5. Constitutive theory for heat vector q 14.6. General remarks 14.7. Summary 15. THERMODYNAMIC RELATIONS AND COMPLETE MATHEMATICAL MODELS 15.1. Introduction 15.2. Thermodynamic pressure: equation of state 15.2.1. Perfect or ideal gas law 15.2.2. Real gas models 15.2.3. Compressible solids 15.3. Internal energy 15.3.1. Compressible matter 15.3.2. Incompressible matter 15.4. Differential form of complete mathematical models in Lagrangian description 15.4.1. CBL: Finite deformation, finite strain 15.4.2. Constitutive theory for e˙[0]: finite deformation, finite strain 15.4.3. Constitutive theory for d˙[0]: finite deformation, finite strain 15.4.4. CBL: Small deformation, small strain 15.4.5. Constitutive theory for e˙: small deformation, small strain 15.4.6. Constitutive theory for d˙: small deformation, small strain 15.4.7. Constitutive theory for heat vector q 15.5. Differential form of complete mathematical model in Eulerian description 15.5.1. CBL: Conservation and balance laws 15.5.2. Constitutive theory for (0) e ˙ 15.5.3. Constitutive theory for (0) d ˙ 15.5.4. Constitutive theory for heat vector 15.6. Summary 16. ENERGY METHODS, PRINCIPLE OF VIRTUAL WORK, CALCULUS OF VARIATIONS 16.1. Introduction 16.2. Boundary value problems (BVPs) 16.2.1. Mathematical classi cation of differential operators 16.2.2. Calculus of variations 16.2.3. Principle of Virtual work: BVPs 16.2.4. Final remarks (BVPs) 16.3. IVPs, energy methods and principle of virtual work 16.3.1. Energy functional from the differential form of IVP 16.3.2. Differential form of IVP from energy functional 16.3.3. Principle of virtual work in IVPs 16.4. Summary Appendix A: Combined generators and invariants Appendix B: Transformations and operations in Cartesian, cylindrical and spherical coordinate systems B.1. Cartesian frame x1; x2; x3 and cylindrical frame r; ; z B.1.1. Relationship between coordinates of a point in x1; x2; x3 and r; ; z-frames B.1.2. Converting derivatives of a scalar with respect to x1; x2; x3 into its derivatives with respect to r; ; z B.1.3. Relationship between bases in x1; x2; x3- and r; ; z-frames B.2. Cartesian frame x1; x2; x3 and spherical frame r; ; ˚ B.2.1. Relationship between coordinates of a point in x1; x2; x3 and r; ; ˚-frames B.2.2. Converting derivatives of a scalar with respect to x1; x2; x3 into derivatives with respect to r; ; ˚ B.2.3. Relationship between bases, i.e., unit vectors in x1; x2; x3- and r; ; ˚-frames B.3. Differential operations in r; ; z- and r; ; ˚-frames B.3.1. r; ; z-frame B.3.2. r; ; ˚-frame B.4. Some examples: r; ; z-frame B.4.1. Symmetric part of the velocity gradient tensor D B.4.2. Skew-symmetric part of the velocity gradient tensor W B.5. Summary BIBLIOGRAPHY INDEX